• Title/Summary/Keyword: thickness of the specimen

Search Result 1,056, Processing Time 0.028 seconds

Simultaneous Measurement of Ultrasonic Velocity and Thickness of Isotropic and Homogeneous Solids Using Two Transducers (두개의 탐촉자를 사용한 등방성 균일 고체의 초음파 속도 및 두께 동시 측정법)

  • Lee, Jeong-Ki;Kwon, Jin-O;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.363-368
    • /
    • 1999
  • Ultrasonic pulse-echo methods measuring the transit time through specimens have been widely used in determination of ultrasonic velocity and thickness of specimens. Usually, to determine the velocity of the ultrasonic. the transit time of the ultrasonic pulse through specimen is measured by using the ultrasonic measuring equipment such as the oscilloscope including ultrasonic pulser/receiver and the thickness of the specimen is measured by using the length measuring instrument such as micrometer or vernier calipers etc., i. e. each parameter is measured by using each measuring method. In the case of the measuring the thickness of a specimen by using the ultrasonics. the ultrasonic equipments, which measure the thickness, such as the ultrasonic thickness gauge must be calibrated by using the reference block of which the ultrasonic velocity is known beforehand. In the present work, we proposed a new method for simultaneous measurement of ultrasonic velocity and thickness without reference blocks. Experimental results for several specimens show that proposed method have good agreements with those by traditional ultrasonic method.

  • PDF

Experimental Structural Dynamic Modification of Fixture for Vibration Testing (진동시험용 치구의 실험적 구조변경 설계)

  • 정의봉;오영세;김준엽
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.180-186
    • /
    • 1998
  • Vibration test fixture is used in random vibration control testing. The specified reference spectrum should be transmitted equally to the specimen attachment points on the fixture. In most practical cases, however, spectrum at each of specimen attachment points may be quite different from the specified reference spectrum because of the dynamic characteristics of vibration test fixture. This paper proposes the method of experimental dynamic modification of fixture system for vibration test so that the reference spectrum can be transmitted to the specimen attachment points without distortion. The stiffness of mounts of specimen and the thickness of fixture are considered as design variables. The frequency response functions of specimen used for input data are obtained from vibration testing, and the frequency response functions of fixture are obtained from finite element modeling. The sensitivities of frequency response functions at specimen attachment points to the mount stiffness are derived from synthesis method of transfer function. And the sensitivities to the thickness of fixture are also derived from finite element modeling. The presented method is verified by computer simulation and vibration testing.

  • PDF

A STUDY OF PHYSICAL PROPERTIES OF COMPOSITE RESIN POLYMERIZATION WITH ARGON LASER (아르곤 레이저에 의한 복합레진의 중합시 물성 변화에 관한 연구)

  • Kim, Deok;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 1998
  • After polymerizing composite resin with argon laser and visible light, four test, to be concretely, measurement of compressive strength using Instron testing machine, surface microhardness using Rockwell hardness tester, quantitative analysis of residual monomer using HPLC and analysis of degree of conversion using FTIR, were accomplished. Test groups were a sort of specimen with 3mm diameter, 4mm thickness for measuring compressive strength, two sort of specimen with 7mm diameter, 2mm and 3mm thickness for measuring surface microhardness, quantitative analysing of residual monomer after curing and measuring the degree of conversion, each were divided by six groups according to the condition of light exposure. In case of argon laser, in 1.0W and 0.5W output, the exposure time for specimen were 5 sec, 10 sec respectiyely. In case of visible light, the exposure time for specimen were 20 sec, 40 sec respectively. The test were accomplished and following results were obtained. 1. Compressive strength of composite resin was the highest in the group of 1 W output, exposing for 10 sec with argon laser, followed by the group of 0.5W, exposing for 10 sec with argon laser, the group of exposing for 40 sec with visible light. But there were statistically no significant difference between these three groups(p>0.05). 2. Surface microhardness of composite resin wasn't significantly affected by light curing conditions. 3. BIS-GMA within residual monomer was least detected in the group of exposing for 40 sec. TEGDMA was least detected in the group of 1 W output, exposing for 10 sec with argon laseboth 2mm and 3mm thickness specimen. 4. The degree of conversion of all groups in the 2mm thickness specimen were more than 50%, similar to each other but in the group of 1W, exposing 10 sec with argon laser the degree of conversion was highest in the 3mm thickness specimen. 5. Argon laser could make composite resin to has similar properties with 25% lesser exposure time than visible light.

  • PDF

Comparison of shrinkage according to thickness of photopolymerization resin for 3D printing (3D 프린팅용 광 중합 수지의 두께에 따른 수축 비교)

  • Kim, Dong-Yeon;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • Purpose: To perform a comparative study on curing shrinkage according to the thickness of photopolymerization resin. Methods: Stainless steel molds of 2, 4, and 6 mm heights were prepared. The 2, 4, and 6 mm-height molds were classified as the 2H, 4H, and 6H groups, respectively. A photopolymerization resin was injected into the stainless steel mold. Photopolymerization was carried out using a photopolymer machine. During photopolymerization, the wavelength and intensity of 400~405 nm were set to 10, the highest intensity among 1~10. Photopolymerization was performed for 30 min per specimen (each group=10). The inner and outer areas of the specimen were measured. The data were analyzed using one-way ANOVA and Kruskal-Wallis H test (α=0.05). Results: In terms of the inner and outer diameters of the photopolymerization resin specimen, the 2H group contracted the most, whereas the 6H group contracted the least. A statistically significant difference was found between the groups (p<0.05). Conclusion: The amount of light irradiation of the photopolymerization resin must be adjusted according to the thickness.

Experimental assessment of the effect of frozen fringe thickness on frost heave

  • Jin, Hyun Woo;Lee, Jangguen;Ryu, Byun Hyun;Shin, Yunsup;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.193-199
    • /
    • 2019
  • A frozen fringe plays a key role in frost heave development in soils. Previous studies have focused on the physical and mechanical properties of the frozen fringe, such as overall hydraulic conductivity, water content and pore pressure. It has been proposed that the thickness of the frozen fringe controls frost heave behavior, but this effect has not been thoroughly evaluated. This study used a temperature-controllable cell to investigate the impact of frozen fringe thickness on the characteristics of frost heave. A series of laboratory tests was performed with various temperature boundary conditions and specimen heights, revealing that: (1) the amount and rate of development of frost heave are dependent on the frozen fringe thickness; (2) the thicker the frozen fringe, the thinner the resulting ice lens; and (3) care must be taken when using the frost heave ratio to characterize frost heave and evaluate frost susceptibility because the frost heave ratio is not a normalized factor but a specimen height-dependent factor.

A Study on the Variations of Impact Strength of Plastics for Various Thicknesses and Notch Formation (두께와 노치생성방법에 따른 플라스틱 수지의 충격강도 변화에 관한 연구)

  • Kim, Hyun;Lee, Dae-Seop;Lim, Jae-Soo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • The impact strength of material is considered the most important design factor for small and light products. Impact strength is a unique material property, thus the impact strength should not depend upon the geometry of specimen. However it varies according to specimen thickness, notching method, and notch shape. In this study, the variations of impact strength have been investigated according to thickness, notch shape, and notching method of specimen. Engineering plastics such as PC, ABS and POM have been used in this study. Experimental results showed impact strength increased as thickness decreasesd. PC showed the highest increment of impact strength when the thickness was thin. Fractured section of PC showed brittle fracture behavior when the specimen was thick. However it showed ductile fracture behavior when it was thin. The impact strength of in-mold notched specimen showed higher than that of milling notched specimen. PC showed the highest notch sensitivity among the materials used in this experiment.

Effects of Double Surfaces Finishing on Acoustical Properties of Soundboard for Traditional Musical Instruments (전통악기 음향판의 양면도장이 음향성에 미치는 영향)

  • Jung, Hee-Suk;Yoo, Tae-Kyung;Kwon, Joo-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.26-33
    • /
    • 1998
  • Acoustical properties of chestnut and paulownia woods have been determined in four film thicknesses of oriental lacquering and cashew varnishing on double surfaces of soundboard to elucidate effects of finishing. Accelerometer was attached to the specimen at one third position from one end, and specimen was hit by the impact hammer at one third position from opposite end. Data were processed by vibration analyzer. The ratio of axial-to-transverse sound velocity of untreated specimens of chestnut and paulownia were 3.25 and 5.34, respectively. Natural frequency, specific Young's modulus, acoustical coefficient, sound velocity, damping of sound radiation(DSR) and acoustical converting efficiency(ACE) decreased by oriental lacquering and cashew varnishing for both species. Damping of internal friction of chestnut decreased by oriental lacquering and cashew varnishing, but that of paulownia increased. Natural frequency. specific Young's modulus, acoustical coefficient, sound velocity, and DSR decreased with increased film thickness of both finishing materials. However, damping of internal friction and ACE showed irregular tendency with increased film thickness. Acoustical properties of cashew varnished chestnut specimen were better than those of oriental lacquered specimen. Acoustical properties of oriental lacquered paulownia specimen were better than those of cashew varnished specimen.

  • PDF

Specimen Size Effect in Estimation of Rut Resistance based on Deformation Strength (공시체 크기가 변형강도를 이용한 소성변형 추정에 미치는 영향)

  • Lee, Moon-Sup;Choi, Sun-Ju;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.1-13
    • /
    • 2004
  • This study dealt with size effect of specimen in measuring deformation strength and estimating rut resistance of asphalt concretes under static loading using Kim test. Two aggregates, a normal asphalt (pen 60-80) and 6 polymer-modified asphalt (PMA) binders were used for preparation of 14 dense-graded mixtures. Mixtures were prepared based on optimum asphalt content by Marshall compactor (S= 10cm) and gyratory compactor (S= 15cm) for Kim test and for wheel tracking test. In statistical analysis by general linear model (GLM) procedure of SAS, the diameter of specimen was found not to be a significant factor that affect the Kim test result. Therefore, it was found that either loom-diameter or 15cm-diameter of specimen gave no significant difference in deformation strength ($K_D$) values in Kim test for any aggregate mixture. However, the thickness of specimen was found to be a significant factor in determining $K_D$. It is estimated that $K_D$ is a function of y, vertical deformation, and y has something to do with thickness of specimen. Therefore, it is suggested that the thickness of specimen should not be higher than 6.6cm, and the correction factor depending on the thickness value should be developed in the future study.

  • PDF

A Study on Crack Retardation Behavior by Single Overload (단일 과대하중에 의한 균열지연거동에 관한 연구)

  • 송삼홍;권윤기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.451-462
    • /
    • 1995
  • Single overload tests performed to examine the crack retardation behavior for the specimen thickness and overload ratios. Delayed crack length was tend to increase in small thickness and big overload ratio but was difference between delayed crack length and plastic zone size that expected in specimen thickness. So retardation behavior that estimated in plastic zone size, was not sufficient. Crack tip branching and striation distribution, secondary mechanisms that effected in retardation behavior, was examined by experiment and finite element analysis. Crack tip branching was affected by micro structure, and appeared the more complicatedly according to increasing damage by overload and decreasing crack driving force in base line stress level. And crack tip branching the branching angle decreased crack driving force in the crack tip. And a characteristic of the fractography on retardation zone was that striation distribution did not appear due to decreased crack driving force.

Current-voltage Characteristics of PTC Ceramics by Changing Donor Concentration and Specimen Thickness (Donor 첨가량과 시편두께에 따른 PTC 세라믹스의 전류-전압 특성)

  • 한응학;강영석;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.619-625
    • /
    • 1991
  • The current-voltage characteristics of the semiconducting BaTiO3 ceramics are measured in the range of 0.01∼100 Volt. Non ohmic behavior was observed above Tc. This behavior is not dependent on specimen thickness and is not observed at the incomplete semiconducting sepcimen. From this experiment, non-ohmic behavior of PTC is attributed to Heywang's potential barrier not to space change limited current. In the low voltage range, current-voltage characteristics of PTC ceramics can be explained by Heywang model.

  • PDF