• Title/Summary/Keyword: thickness modes

Search Result 392, Processing Time 0.022 seconds

Extraordinary Optical Transmission and Enhanced Magneto-optical Faraday Effect in the Cascaded Double-fishnet Structure with Periodic Rectangular Apertures

  • Lei, Chengxin;Man, Zhongsheng;Tang, Shaolong
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 2020
  • A significant enhancement of the magneto-optical Faraday rotation and extraordinary optical transmission (EOT) in the cascaded double-fishnet (CDF) structure with periodic rectangular apertures is theoretically predicted by using the extended finite difference time domain (FDTD) method. The results demonstrate that the transmittance spectrum of the CDF structure has two EOT resonant peaks in a broad spectrum spanning visible to near-infrared wavebands, one of them coinciding with the enhanced Faraday rotation and large figure of merit (FOM) at the same wavelength. It is most important that the resonant position and intensity of the transmittance, Faraday rotation and FOM can be simply tailored by adjusting the incident wavelength, the thickness of the magnetic layer, and the offset between two metallic rectangular apertures, etc. Furthermore, the intrinsic physical mechanism of the resonance characteristics of the transmittance and Faraday rotation is thoroughly studied by investigating the electromagnetic field distributions at the location of resonance. It is shown that the transmittance resonance is mainly determined by different hybrid modes of surface plasmons (SPs) and plasmonic electromagnetically induced transparency (EIT) behavior, and the enhancement of Faraday rotation is mostly governed by the plasmonic electromagnetically induced absorption (EIA) behavior and the conversion of the transverse magnetic (TM) mode and transverse electric (TE) mode in the magnetic dielectric layer.

Gravitational Instability of Rotating Isothermal Rings

  • Moon, Sanghyuk;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.61.2-61.2
    • /
    • 2016
  • Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent eld method, we first construct their equilibrium sequences specified by two parameters: ${\alpha}$ corresponding to the thermal energy relative to gravitational potential energy, and $R_B$ measuring the ellipticity or ring thickness. The density distributions in the meridional plane are steeper for smaller ${\alpha}$, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency ${\Omega}$ and central density ${\rho}_c$. Rings with smaller are found more unstable with a larger unstable range of the azimuthal mode number. The instability is completely suppressed by rotation when ${\Omega}$ exceeds the critical value. The critical angular frequency is found to be almost constant at $0.7(G{\rho}_c)^{1/2}$ for ${\alpha}$ > 0.01 and increases rapidly for smaller ${\alpha}$. We apply our results to a sample of observed star-forming rings and confirm that rings without a noticeable azimuthal age gradient of young star clusters are indeed gravitationally unstable.

  • PDF

An Experimental Study and Deformation Analysis of a Dredged fills Improved with Bamboo Mats (대나무매트가 포설된 준설매립지반의 모형실험 및 변형해석)

  • Kim, Jong-Ryeol;Kang, Kwon-Soo;Kim, Woo-Jin;Hwang, Sung-Won;Kang, Jin-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1520-1527
    • /
    • 2005
  • In order to investigate the effect of improvement with bamboo mats on dredged fills, several tests were performed with different widthes (0.0B, 0.5B, 1.0B, 2.0B). The results indicate that the failure modes of the models without bamboo mats are close to local shear failure, and change to general shear failure as the width of a bamboo mat increases. A series of tests with four different widths (0.0B, 0.5B, 1.0B, 2.0B) were carried out on the models which have no desiccated surface layers, to find out the width that the general shear failure might occur. Finally, a series of tests with this width were performed on the models with three different desiccated surface layers (3cm, 5cm, 10cm). Throughout the tests, strength and deformation according to the thickness of desiccated surface layer was investigated.

  • PDF

Physical Characteristics of 3C-SiC Thin-films Grown on Si(100) Wafer (Si(100) 기판 위에 성장돈 3C-SiC 박막의 물리적 특성)

  • ;;Shigehiro Nishino
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.953-957
    • /
    • 2002
  • Single crystal 3C-SiC (cubic silicon carbide) thin-films were deposited on Si(100) wafer up to the thickness of 4.3 ${\mu}{\textrm}{m}$ by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane; {CH$_{3}$$_{6}$ Si$_{2}$) at 135$0^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC film was 4.3 ${\mu}{\textrm}{m}$/hr. The 3C-SiC epitaxial film grown on Si(100) wafer was characterized by XRD (X-ray diffraction), AFM (atomic force microscopy), RHEED (reflection high energy electron diffraction), XPS (X-ray photoelecron spectroscopy), and Raman scattering, respectively. Two distinct phonon modes of TO (transverse optical) near 796 $cm^{-1}$ / and LO (longitudinal optical) near 974$\pm$1 $cm^{-1}$ / of 3C-SiC were observed by Raman scattering measurement. The heteroepitaxially grown film was identified as the single crystal 3C-SiC phase by XRD spectra (2$\theta$=41.5。).).

Effect of the Cross Sectional Shapes on the Static and Fatigue Torque Transmission Capabilities of Adhesive Single Lap Joints (단면형상에 따른 단일겹치기 이음의 피로 및 정적 토크 전달특성에 관한 실험적 연구)

  • 최진경;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.835-845
    • /
    • 1994
  • In this paper, the effects of the adhesive thickness and adherend roughness on the static and fatigue strengths of the adhesively bonded circular single lap joints has been investigated by an experimental method. The stacking sequence effect of the composite adherend on the static and fatigue strength and the fracture patterns of the adhesive failure were also observed. Since the circular single lap joint fails catastrophically beyond the static strength of fatigue limit, the tubular polygonal adhesively bonded joints such as triangular, tetragonal, pentagonal, hexagonal as well as elliptical joints were manufactured in order to give partial mechanical characteristics to the adhesively bonded tubular joints. These joints were tested both in static and fatigue modes. From the experimental investigations, it was found that the fatigue strength of the circular adhesively bonded joints was much dependent on the arithmetical average surface roughness of the adherends and the polygonal adhesively bonded joints had better fatigue strength characteristics than the circular adhesively bonded joints.

Development of Vibration Analysis Algorithm for Joined Conical-cylindrical Shell Structures using Transfer of Influence Coefficient

  • Yeo, Dong-Jun;Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2013
  • This describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.

A Simulation Tool for Ultrasonic Inspection

  • Krishnamurthy, Adarsh;Mohan, K.V.;Karthikeyan, Soumya;Krishnamurthy, C.V.;Balasubramaniam, Krishnan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.153-161
    • /
    • 2006
  • A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment for immersion and contact modes of inspection. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, a description of the various features of SIMULTSONIC is given followed by examples illustrating the capability of SIMULTSONIC to deal with inspection of canonical objects such as pipes. In particular, the use of SIMULTSONIC in the inspection of very thin-walled pipes (with 450 urn wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes.

Effects of plate slenderness on the ultimate strength behaviour of foam supported steel plate elements

  • Pokharel, Narayan;Mahendran, Mahen
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.407-422
    • /
    • 2005
  • Plate elements in fully profiled sandwich panels are generally subjected to local buckling failure modes and this behaviour is treated in design by using the conventional effective width method for plates with a width to thickness (b/t) ratio less than 100. If the plate elements are very slender (b/t > 1000), the panel failure is governed by wrinkling instead of local buckling and the strength is determined by the flexural wrinkling formula. The plate elements in fully profiled sandwich panels do not fail by wrinkling as their b/t ratio is generally in the range of 100 to 600. For this plate slenderness region, it was found that the current effective width formula overestimates the strength of the fully profiled sandwich panels whereas the wrinkling formula underestimates it. Hence a new effective width design equation has been developed for practical plate slenderness values. However, no guidelines exist to identify the plate slenderness (b/t) limits defining the local buckling, wrinkling and the intermediate regions so that appropriate design rules can be used based on plate slenderness ratios. A research study was therefore conducted using experimental and numerical studies to investigate the effect of plate slenderness ratio on the ultimate strength behaviour of foam supported steel plate elements. This paper presents the details of the study and the results.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

Developments of double skin composite walls using novel enhanced C-channel connectors

  • Yan, Jia-Bao;Chen, An-Zhen;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.877-889
    • /
    • 2019
  • The developments of double skin composite (DSC) walls with novel enhanced C-channel connectors (DSCW-EC) were reported. Followed axial compression tests on prototype walls were carried to evaluate structural performances of this novel DSC composite structures. The testing program consists of five specimens and focused on the layout of the novel enhanced C-channel (EC) connectors, which include the web direction of C-channels, steel-faceplate thickness, vertical and horizontal spacing of C-channels. Crushing in concrete core and buckling of steel faceplate were two main observed failed modes from the compression tests. However, elastic or plastic buckling of the steel faceplate varies with designed parameters in different specimens. The influences of those investigated parameters on axial compressive behaviors of DSCW-ECs were analyzed and discussed. Recommendations on the layout of novel EC connectors were then given based on these test results and discussions. This paper also developed analytical models for predictions on ultimate compressive resistance of DSCW-ECs. Validation against the reported test results show that the developed theoretical models predict well the ultimate compressive resistance of DSCW-ECs.