• Title/Summary/Keyword: thickness effect

Search Result 6,580, Processing Time 0.034 seconds

Effect of Wall Thickness of Perforated Wall with Vertical Slits on Wave Reflection and Transmission (연직 슬릿 유공벽의 벽두께가 파랑 반사 및 전달에 미치는 영향)

  • Kwon, Kab Keun;Lee, Jong In;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.343-351
    • /
    • 2014
  • The reflection and transmission coefficients of waves due to perforated wall are mainly determined by both the porosity and wall thickness of the perforated wall and the period and nonlinearity of incident waves. Among them the wall thickness is very important because it affects the head loss coefficient and the inertia length of the wall. However, by employing the head loss coefficient derived for sharp crested orifice, the previous researches have neglected, or incorrectly considered the effect of wall thickness on the head loss coefficient. Even though it is considered, the effect of the inertia length is neglected in some empirical formulae. Thus, the effect of wall thickness on the reflection and transmission coefficients of waves is not properly considered. In this study comprehensive experiments are conducted for the perforated walls with various thicknesses, and the results are compared with those predicted by the empirical formulae. As a result it is found that the existing formulae can not properly consider the effect of wall thickness, and it is confirmed that a new formula which can correctly consider the effect of wall thickness on the head loss coefficient is necessary.

Characterization of Asphalt Pavement Distress Using Korean Pavement Research Program (한국형포장설계법을 이용한 아스팔트포장의 파손특성)

  • Lee, Kwan-Ho;Lee, Kyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2017
  • The main purpose of this study is to evaluate the main parameters involved in the asphalt pavement distresses, including IRI (International Rough Index), fatigue, and permanent deformation. The main parameters are the region (Seoul and Busan), traffic level, asphalt binder, maximum aggregate of surface course, thickness of the surface course and base. A total of 64 case studies were carried out under the auspices of the KPRP (Korea Pavement Research Program). From the analysis of the KPRP test results, the key factors for the asphalt pavement distress were determined. Considering the effect of one variable in the basic condition, asphalt binder was the major factor having an effect on the distresses for an AADT (Annual Average Daily Traffic) of 5000 in the Seoul area. Among the remaining factors, the results were found to be in the order of the base layer thickness (A), surface layer thickness (B), and aggregate particle size thickness (D). The same results were obtained for an AADT of 10000. In the case of Busan with an AADT of 5000, the same result was obtained as for Seoul. Among the remaining factors, the results were in the order of the base layer thickness (A), aggregate particle thickness (D), and surface layer thickness (B). Even though there was a slight difference in the effect of the traffic level and region, asphalt binder was the parameter having the greatest effect on the asphalt pavement distress. In the case where the effect of multiple parameters was analyzed, the combination of the asphalt binder and base thickness showed a relatively strong effect.

The Effect of Blank Holding Force on Thickness Variation in Simultaneous Sheet forming process with Circle and Rectangle Shape of AZ31B Magnesium Sheet (AZ31B 마그네슘 판재의 원형 및 사각형 동시변형 공정에서 블랭크 홀딩력이 두께변화에 미치는 영향)

  • Kwon, K.T.;Kang, S.B.;Kim, H.H.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.531-537
    • /
    • 2009
  • The effect of blank holding force on thickness variation in simultaneous sheet forming with rectangular shape and circular has been demonstrated. Because has investigated an effect on formability of magnesium sheet, in this paper, the effect of punch radius on formability have been thinning, various crack phenomena and forming velocity. By simultaneously forming process with circular and rectangular shape, the data of simultaneously forming process with circular and rectangular shape will used to a part development such as notebook computer case, cell phone and bipolar plate of fuel cell.

A Numerical Analysis of the Thickness-Induced Effect on the Aerodynamic Characteristics of Wings Moving Near Ground

  • Han, Cheolheui;Cho, Jinsoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • A numerical method to simulate Wing-In-Ground(WIG) effects for the wings moving near ground is developed. The aerodynamic analysis scheme for the wings is based on a compressible non-planar lifting surface panel method and the WIG effect is included by images. The thickness-induced effect is implemented into the lifting surface panel method by using the teardrop theory. The numerical simulation is done for the rectangular wings by varying the ground proximity. The present method is validated by comparing the calculated aerodynamic coefficients with other numerical results and measured data, showing good agreements.

  • PDF

Multi-layered Effect for the Insulation Design of a HTS Cable (고온초전도 케이블의 절연설계를 위한 적층효과)

  • Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Kim, Hae-Jong;Cho, Jeon-Wook;Chung, Soon-Yong;Kim, Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.950-955
    • /
    • 2005
  • For the insulation design of a high temperature superconducting(HTS) cable, three kinds of design method were proposed, which used AC and impulse withstand voltage and partial discharge inception strength. However, the designed insulation thickness by AC and impulse could not be applied to cable fabrication process due to much low electrical breakdown strength. The effect of the multi-layered insulation paper was not considered on the previous insulation design and the insulation thickness by partial discharge inception strength could be applied only. In this paper, the electrical breakdown characteristic, which considered the effect of multi-layered of LPP, was investigated to design the insulation thickness.

A Study on Optimal Design of Silicon Solar Cell (실리콘 태양전지 최적설계에 관한 연구)

  • ;;;Suresh Kumar Dhungel
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.187-191
    • /
    • 2004
  • In this work, we used the PCID simulator for simulation of solar cell and examined the effect of front-back surface recombination velocity, minority carrier diffusion length, junction depth and emitter sheet-resistance. As the effect of base thickness, the efficiency decreased by the increase in series resistance with the increase of the thickness and found decrease in efficiency by decrease of the current as the effect of the recombination. Also, as the effect of base resistivity, the efficiency increased somewhat with the decrease in resistivity, but when the resistivity exceeded certain value, the efficiency decreased as a increase in the recombination ratio. The optimum efficiency was obtained at the resistivity 0.5 $\Omega$-cm, and thickness $100\mu\textrm{m}$. We have successfully achieved 10.8% and 13.7% efficiency large area($103mm{\times}103mm$) mono-crystalline silicon solar cells without and with PECVD silicon nitride antireflection coating.

A Probabilistic Study on Thickness Effect of Fracture Toughness in Heterogeneous Brittle Materials (불균질 취성재료 파괴인성에 미치는 두께효과의 확률적 연구)

  • Kim, Am-Kee;Koh, Sung-Wi;Jung, Gyoo-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1356-1362
    • /
    • 1996
  • Fracture toughness of heterogeneous brittle materials such as poly crystalline ceramics used to present the size (thickness) effect as well as statistically distributed results. There is belief that both(size effect and scatter) must be associated with each other. However, no generally accepted theory has been established so far. Using statistical approach, a probabilistic modeling for the fracture toughness which describes the thickness effect was attempted in this paper, Weibull distribution of specific fracture energy(SFE)at local areas and Griffith criterion are applied to the model. In addition, the newly developed model was verified with experimental results of alumina.

Effect of thickness and reinforcement on concrete plates under high speed projectiles

  • Tais, Abdalla S.;Ibraheem, Omer F.;Raoof, Saad M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.587-594
    • /
    • 2022
  • Behavior of concrete elements under the effect of high-speed projectiles has gain increasing interest recently. It's necessary to understand how far the concrete can absorb the effect of bullets in order to save the occupants when design security and military infrastructures. This study presents a total of 18 concrete slabs casted and tested under reinforcement ratios, 0%, 0.35% and 0.7%. Parameters interested were slab thickness, (50 mm, 100 mm, and 150 mm) and type of weapon. All specimens tested to investigate their response under the effect of attacking by two common types of weapon. In general, it was found that projectile penetration was controlled by their thickness regardless the steel reinforcement ratio. However, the steel reinforcement controls the damage.

Effect on the Subcutaneous Fat Thickness of the clothing Training in the Cold Condition (향한기의 표의훈련이 피하지방두께에 미치는 영향)

  • 박승순;이원자
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.4
    • /
    • pp.551-562
    • /
    • 1999
  • This study was intended to investigate the effect on the human body such as subcutaneous fat thickness the circumference of extremities etc. of the clothing training of putting on thin clothes periodically from the cold period. The subjects were divided into the clothing training group and the non-training group, The training group was asked to wear cool clothes in daily life and to wear the training clothes of T-shirts with half-length sleeves and pants and perform the clothing training for two hours daily three times a week in a cold environment over the period from November to February. The non-training group was asked to lead a life wearing comfortable clothes. Then a comparative experiment was conducted at 15$\pm$1$^{\circ}C$, 50$\pm$5% R, H and 0.25m/sec before and after the clothing training. After the clothing training regardless of gender subcutaneous fat thickness was more increased and total clothing weight per the surface area of the body was decreased in the training group than the non-training group. The training group showed lower skin temperature in the limbs and lower average skin temperature than the non-training group irrespective of gender which proved the effect of the clothing training. The training group was shown to have attendancy toward a greater sense of warmth and a less sense of discomfort which proved the effect of the clothing training.

  • PDF

Parametric Study on the Heat Loss of the Reactor Vessel in the Nuclear Power Plant (원자력 발전 원자로 용기의 열손실 설계인자에 관한 연구)

  • Jong-Ho Park;Seoug-Beom Kim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.827-836
    • /
    • 2004
  • The design parameter of the heat loss for the pressurized water reactor has been studied. The heat loss from the reactor vessel through the air gap. insulation are analysed by using the computational fluid dynamics code, FLUENT. Parametric study has been performed on the air gap width between the reactor vessel wall and the inner surface of the insulation, and on the insulation thickness. Also evaluated is the performance degradation due to the chimney effect due to gaps left between the panels during the installation of the insulation system. From the analysis results, the optimal with of air gap and insulation thickness and the value of heat loss are obtained The results show how the heat loss varies with the air gap width and insulation thickness. The temperature and the velocity distributions are also presented. From the results of the evaluation. the optimal air gap width and the optimal insulation thickness are obtained. As the difference between the predicted heat loss and measured heat loss from the reactor vessel is construed Primarily as losses due to chimney effect. the contribution of the chimney effect to the total heat loss is quantitatively indicated.