• Title/Summary/Keyword: thickness deformation

검색결과 1,606건 처리시간 0.033초

Static and dynamic behavior of FGM plate using a new first shear deformation plate theory

  • Hadji, Lazreg;Meziane, M. Ait Amar;Abdelhak, Z.;Daouadji, T. Hassaine;Bedia, E.A Adda
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.127-140
    • /
    • 2016
  • In this paper, a new first shear deformation plate theory based on neutral surface position is developed for the static and the free vibration analysis of functionally graded plates (FGPs). Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher order shear deformation theories. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present shear deformation plate theory and the neutral surface concept, the governing equations are derived from the principle of Hamilton. There is no stretching-bending coupling effect in the neutral surface based formulation. Numerical illustrations concern flexural and dynamic behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

레이저 용접 테일러드 블랭크의 기본 성형특성 II : 신장플랜지 성형특성 (Forming Characteristics of Laser Welded Tailored Blanks II : Stretch Flange Forming Characteristics)

  • 박기철;한수식;김광선;권오준
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.36-48
    • /
    • 1998
  • In order to analyze the stretch flange forming characteristics of tailored blanks. laser welded blanks of different thickness and strength combinations were prepared and hole expansion tests were done. The stretch flange formability of laser welded blanks was reduced as increasing the deformation restraining force($strength{\times}thickness$) ratio between two welded sheets. Simulation of stretch forming mode deformation and comparson with experimental results showed that the stretch flange formabili-ty was influenced not only by the difference of the deformation restraining forces between two base sheets but also by the difference of the deformation restraining forces between base sheet and weld. Therefore the stretch flange formability was reduced more rapidly than tensile elongation as increas-ing the deformation restraining force ration. It was also found that simulation of stretch flange forming was more accurate when material properties of weld was given.

  • PDF

쌍롤형 박판주조공정에서 주조 롤의 열응력 및 열변형 해석 (Analysis of Thermal Stress and Deformation of Casting Roll in Twin Roll Strip Casting Process)

  • 박철민;김완수;박경진
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1943-1951
    • /
    • 2002
  • The casting roll design is one of the most important requirements in twin roll strip casting process. Coupled analyses of heat transfer and deformation for the cast roll are carried out by use of the finite element program MARC to examine the thermal stress and deformation. The effects of several factors on thermal stress and deformation are also investigated. The amount of thermal stress increases when the ni thickness increases and when the casting speed and the copper sleeve thickness decrease.

Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions

  • Jandaghian, Ali Akbar;Rahmani, Omid
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.67-78
    • /
    • 2017
  • In this study, free vibration of functionally graded (FG) micro/nanobeams based on nonlocal third-order shear deformation theory and under different boundary conditions is investigated by applying the differential quadrature method. Third-order shear deformation theory can consider the both small-scale effects and quadratic variation of shear strain and hence shear stress along the FG nanobeam thickness. The governing equations are obtained by using the Hamilton's principle, based on third-order shear deformation beam theory. The differential quadrature (DQ) method is used to discretize the model and attain the natural frequencies and mode shapes. The properties of FG micro/nanobeam are assumed to be chanfged along the thickness direction based on the simple power law distribution. The effects of various parameters such as the nonlocal parameter, gradient index, boundary conditions and mode number on the vibration characteristics of FG micro/nanobeams are discussed in detail.

Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect

  • Dehsaraji, Maryam Lori;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.657-670
    • /
    • 2020
  • In this paper, vibration analysis of functionally graded nanoshell is studied based on the sinusoidal higher-order shear and normal deformation theory to account thickness stretching effect. To account size-dependency, Eringen nonlocal elasticity theory is used. For more accurate modeling the problem and corresponding numerical results, sinusoidal higher-order shear and normal deformation theory including out of plane normal strain is employed in this paper. The radial displacement is decomposed into three terms to show variation along the thickness direction. Governing differential equations of motion are derived using Hamilton's principle. It is assumed that the cylindrical shell is made of an arbitrary composition of metal and ceramic in which the local material properties are measured based on power law distribution. To justify trueness and necessity of this work, a comprehensive comparison with some lower order and lower dimension works and also some 3D works is presented. After presentation of comparative study, full numerical results are presented in terms of significant parameters of the problem such as small scale parameter, length to radius ratio, thickness to radius ratio, and number of modes.

커넥팅 로드 베어링의 EHL에 관한 수치해석 (A Numerical Analysis of the Elastohydrodynamic Lubrication of Connecting Rod Bearings)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.63-71
    • /
    • 1996
  • The connecting rod bearing, which is subjected to periodical dynamic loading, is an impoRant component of the reciprocating engine. In the operation of this bearing, significant parameters are the oil film thickness and the film pressure. Peak film pressures of 20-30 MPa are not uncommon. So the elastic deformation of the bearing housing can have a significant effect on the bearing performance. In this study, a numerical analysis of connecting rod bearing is investigated. Elastic deformation of the bearing housing is considered in the analysis. Separate hydrodynamic and structural analysis are coupled through a direct iterative process. It is shown that as the result of the elastic deformation of the bearing housing, the eccentricity ratio is increased, and the minimum value of the minimum film thickness and the maximum value of the maximum film pressure are decreased. The variations of rotational speed and cylinder pressure affect the minimum film thickness and the maximum film pressure variations of the connecting rod bearing.

평판용접에 관한 평면변형 열탄소성 해석 (The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate)

  • 방한서;한길영
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

지오그리드로 보강된 투수성 연성포장 보조기층제 영구변형을 고려한 층두께 산정 비교 연구 (Evaluation of Geogrid-Reinforced Subbase Layer Thickness of Permeable Flexible Pavements based on Permanent Deformation Model)

  • 권혁민;오정호;한신인
    • 한국도로학회논문집
    • /
    • 제17권1호
    • /
    • pp.69-75
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the effectiveness of a geogrid reinforced subbase of permeable flexible pavement structures with respect to permanent deformation. METHODS : Experimental trials employing a repeated triaxial load test scheme were conducted for both a geogrid reinforced subbase material and a control specimen to obtain the permanent deformation properties based on the VESYS model. Along with this, a finite element-based numerical analysis was conducted to predict pavement performance with respect to the rutting model incorporated into the analysis. RESULTSAND CONCLUSIONS : The results of the experimental study reveal that the geogrid reinforcement seems to be effective in mitigating permanent deformation of the subbase material. The permanent deformation was mostly achieved in the early stages of loading and then rapidly reached equilibrium as the number of load applications increased. The ultimate permanent deformation due to the geogrid reinforcement was about 1.5 times less than that of the control specimen. Numerical analysis showed that the permeable, flexible pavement structure with the geogrid reinforced subbase also exhibits less development of rutting throughout the service life. This reduction in rutting led to a 20% decrease in thickness of the subbase layer, which might be beneficial to reduce construction costs unless the structural adequacy is not ensured. In the near future, further verification must be conducted, both experimentally and numerically, to support these findings.

압출 출구 온도에 따른 Al 6061 합금의 표면 재결정층 두께 변화 및 기계적 특성 변화 (The Thickness of Recrystallization Layer and Mechanical Properties According to Extrusion Exit Temperature)

  • 김수빈;박태희;김현기;이상목;김희국
    • 소성∙가공
    • /
    • 제30권5호
    • /
    • pp.219-225
    • /
    • 2021
  • When extruding Al6061 alloys, deformation energy is deposited inside the extruded alloy depending on the deformation and the temperature of extrusion. This creates a Peripheral Coarse Grain (PCG) on the surface, where relatively more deformation energy. of the extruded alloy has been accumulated. Furthermore, since the deformation of materials continues while the materials recrystallize, it is important to examine the effect of deformation energy on dynamic recrystallization in the process of extruding Al alloys along with their microstructure. Prior studies explain the theory behind PCG growth though quantitative analysis on PCG growth of Al alloys during extrusion processes has not yet been addressed. This study aims to measure the generated PCG thickness which determines the correlation between extrusion outlet temperature and its effect on mechanical properties. Surface structure observations were performed using Optical Microscope (OM) and mechanical properties were evaluated through tensile strength and hardness measurement. Throughout this study, we endevoured to find the optimum condition of extrusion exit temperature of Al6061 and confirmed improved d reliability. This study describes the effect of the complex process variables such as exit temperature on the thickness of PCG layer for the Al6061 alloy using the 200 tons extrusion press. We therefore, discovered that the PCG layer thickness was 117 ㎛ at temperatures between 460 ℃ to 520 ℃.

궤도 하부구조설계를 위한 간이 설계 모노그래프 개념 개발 (Development of A Simple Design Monograph for Track Sublayers)

  • 박미연;이진욱;이성혁;박재학;임유진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.428-435
    • /
    • 2011
  • In general, thickness of the sublayers under track is designed based on concept of vertical soil reaction value or vertical stiffness. However, this design method cannot take consideration into soil-track interaction under repetitive load, traffic condition and velocity of the train. Furthermore, the reinforced roadbed soils experience complex behavior that cannot be explained by conventional stress-strain relation expressed as soil reaction value k. The reinforced roadbed soils also can produce cumulative permanent deformation under repetitive load caused by train. Therefore new design method for the sublayers under track must be developed that can consider both elastic modulus and permanent deformation. In this study, a new design concept, a rule-of-thumb, is proposed as the form of design monograph that is developed using elastic multi-layer and finite element programs by analyzing stress and deformation in the sublayers with changing the thickness and elastic modulus of the sublayers and also using data obtained from repetitive triaxial test. This new design concept can be applied to design of the reinforced roadbed before developing full version of design methodology that can consider MGT, axial load and the material properties of the layers. The new design monograph allows the user to design the thickness of the reinforced roadbed based on permanent deformation, elastic modulus and MGT.

  • PDF