• Title/Summary/Keyword: thiazole

Search Result 102, Processing Time 0.025 seconds

Volatile Constituents of Processed Squid Product (오징어 가공품의 냄새성분에 관한 연구)

  • Chiaki Koiiumi;Toshiaki Ohshima;Lee, Eung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.547-554
    • /
    • 1990
  • The precursor substance and volatile components of cooked flavor of squid meat were studied. Volatile components were trapped by simultaneous distillation-extraction method, and these were fractionated into the neutral, basic, phenolic and acidic fraction. Volatile flavor components in these frations were analyzed by GC and GC-MS. 80% methanol solution was the most effective solvent for extraction of the precursor substance for cooked flavor. The neutral and basic fraction, by organoleptic test, seem to have a major effect on squid-like flavor. Forty-four compounds, including 2 hydorcarbons, 10 alcohols, 5 aldehydes, 1 ketone, 1 furan, 3 sulfide compounds, 7 pyrazines, 2 pyridines, 1 amino, 2 phenols and 10 acids, identified as cooked flavor compounds of squid meat.

  • PDF

Synthesis and In Vitro Evaluation of Some Novel Benzofuran Derivatives as Potential Anti-HIV-1, Anticancer, and Antimicrobial Agents

  • Rida, Samia M.;EI-Hawash, Soad A.M.;Fahmy, Hesham T.Y.;Hazza, Aly A.;EI-Meligy, Mostafa M.M.
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.16-25
    • /
    • 2006
  • A novel series of 1-(1-benzofuran-2-yl-ethylidene)-4-substituted thiosemicarbazides (2a-d) along with some derived ring systems: substituted-2,3-dihydro-thiazoles(3a-c, 4a-f) and thiazolidin-4-ones(5a-d and 6a-d), were synthesized. In addition, cyanoacetic acid-(1-benzofuran-2-yl-ethylidene) hydrazide(7) was used to prepare another new series of compounds consisting of substituted pyridin-2(1H)-ones(8a-c); 2-thioxo-2,3-dihydro-thiazoles(9a-d) and 2-thioxo-2,3-dihydro-6H-thiazolo[4,5-d]pyrimidin-7-ones (10a-c, 11a-c). The absolute configuration of compound 5c was determined by X-ray crystallography. The compounds prepared were evaluated for their in vitro anti-HIV, anticancer, antibacterial, and antifungal activities. Among the tested compounds, compounds 5c and 9a produced a significant reduction ㅐ ㄹ the viral cytopathic effect (93.19% and 59.55%) at concentrations $>2.0{\times}10^{-4}\;M\;and\;2.5{\times}10^{-5}\;M$respectively. Compound 9a was confirmed to have moderate anti-HIV activity. Compounds 2a, 2d, and 5c showed mild antifungal activity. However, none of the tested compounds showed any significant anticancer activity.

Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells

  • Han, A Reum;Yang, Ji Woong;Na, Jung-Min;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.439-444
    • /
    • 2019
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer's disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced ${\beta}$-amyloid ($A{\beta}$) generation and development of AD is not yet known. We have now investigated the protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride (KHG26702), a novel thiazole derivative, on oxygen-glucose deprivation (OGD)-reoxygenation (OGD-R)-induced $A{\beta}$ production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with KHG26702 significantly attenuated OGD-R-induced production of reactive oxygen species and elevation of levels of malondialdehyde, prostaglandin $E_2$, interleukin 6 and glutathione, as well as superoxide dismutase activity. KHG26702 also reduced OGD-R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, KHG26702 reduced OGD-R-induced $A{\beta}$ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that KHG26702 may prevent neuronal cell damage from OGD-R-induced toxicity.

Synthesis and antifungal activities of 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-arylthiazol-5-yl]piperidine derivatives on Phytophthora capsici (4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-arylthiazol-5-yl] piperidine 유도체들의 합성과 고추역병균에 대한 살균활성)

  • Nam, Seok-Woo;Lee, Gyung-Rak;Kim, Tae-Joon;Chung, Bong-Jin;Choi, Won-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Fungicidal activities against phytopathogenic fungi of diarylthiazole compound of 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-(4-fluorophenyl)thiazol-5-yl]-1-methylpiperidine (I) have been determined to be excellent and compound I was used as the leading compounds in this study. Furthermore, the compound was synthesized by reacting them with five functional groups, 4-fluoro-3-methylphenyl, 4-fluoro-3-chlorophenyl, 4-chloro-2-fluorophenyl, 4-bromo-3-methylphenyl and 2,4-dichlorophenyl groups instead of 4-fluorophenyl group. Also, 2-amino-, 2-(N-ethoxycarbonyl)piperidin-4-yl-, and 2-piperidin-4-yl-thiazole were introduced as the leads instead of 2-N-methylpiperidine-4-yl-thiazol of compound I. VIII-1~VIII-5 and XIII-1~XV-5 compounds were newly synthesized and their structures were confirmed by $^1H$-NMR-spectrum. The fungicidal activities of all the synthesized compounds against Phytophthora capsici were examined using the whole plant method. Among the VIII-1~VIII-5 and XIII-1~XV-5 chemicals, XIV-3 showed the most potent antifungal activity in vivo. While the $EC_{50}$ and $EC_{90}$ values of the commercial fungicide dimethomorph and I were $4.26{\pm}0.02$, $14.72{\pm}0.05$ and $1.01{\pm}0.11$, $6.31{\pm}0.09mM$, those of 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-(4-chloro-2-fluorophenyl)thiazol-5-yl]-1-methylpiperidine (XIV-3) was $0.98{\pm}0.21$ and $5.85{\pm}0.05mM$. Therefore, XIV-3 can be considered as a viable candidate for the control of plant diseases caused by P. capsici, and further studies will be conducted on the mode of action XIV-3.

Establishment of an Analytical Method for Determination of Fungicide Oxathiapiprolin in Agricultural Commodities using HPLC-UV Detector (HPLC-UVD를 이용한 농산물 중 살균제 Oxathiapiprolin의 잔류분석법 확립)

  • Jang, Jin;Kim, Heejung;Do, Jung Ah;Ko, Ah-Young;Lee, Eun Hyang;Ju, Yunji;Kim, Eunju;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.186-193
    • /
    • 2016
  • An analytical method was developed for the determination of oxathiapiprolin in agricultural commodities. Oxathiapiprolin is a new oomycide (fungicide of piperidinyl thiazole isoxazoline class) which controls downy mildew in cucurbits caused by Pseudoperonospora cubensis (oomycete plant pathogen). Agricultural commodities were extracted with acetonitrile and partitioned with dichloromethane to remove the interference, adjusting pH between 9 and 10 by 1 N sodium hydroxide. After purification by silica SPE cartridge to clean up the interference of organic compounds, they were finally quantified by HPLC-UVD (high performance liquid chromatograph ultraviolet detector) using a wavelength at 260 nm and confirmed by LC-MS (liquid chromatograph mass spectrometer) in electro-spray ionization positive ion mode. The standard calibration curve was linear with coefficients of determination ($r^2$) 1.00 over the calibration ranges (0.025-2.5 mg/L). Recoveries were ranged between 86.7 to 112.7%, with relative standard deviations less than 10% at three concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates. The overall results were determined and estimated according to the CODEX guidelines (CAC/GL40). The proposed method for determination of oxathiapiprolin residues in agricultural commodities can be used as an official method.

Synthesis and Activity Evaluation of Imidazolidinetrionylsaccharin Derivatives (Imidazolidinetrionylsaccharin 유도체의 합성 및 활성평가)

  • Jung, Dai-Il;Kim, Yun-Young;Kim, Young-Hwan;Lee, Do-Hun;Lee, Gi-Hye;Shin, Yeo-Ju;Kim, Yun-Hye;Byun, Suk-In;Han, Jung-Tae
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.54-58
    • /
    • 2003
  • 1-Methyl-3-(1,1,3-trioxo-1,3-dihydro-1λ$^6$-benzo[d]isothiazol-2-ylmethyl)-imidazolidine-2,4,5-triones 5a, 1-ethy1-3-(1,1,3-trioxo-1,3-dihydro-lλ$^6$/-benzo[d]isothiazol-2-ylmethyl)-imidazolidine-2,4,5-triones 5b 1-phenyl-3-(1,1,3-trioxo-1,3-dihydro-1λ$^6$-benzo [d]isothiazol-2-ylmethyl)-imidazolidine-2,4,5-triones 5c were obtained by means of 4 reaction steps involved the reaction of 1-methyl-urea and oxalyl chloride. Biological tests(Plant Response Screening Result, Insect Primary Screening Result and Fungicide Primary Screening Result) of synthesized sacccarin derivatives were executed.

Formation of Meatlike Flavors by Maillard Reaction Using Hydrolyzed Vegetable Protein (HVP) (HVP를 이용한 Maillard 반응에 의한 Meatlike Flavor의 생성)

  • Yoon, Suk-Hwan;Lee, Jung-Keun;Nam, Hee-Sop;Lee, Hyung-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.781-786
    • /
    • 1994
  • Meatlike flavors were manufactured using hydrolyzed vegetable protein (HVP) with several reactive precursors at different reaction conditions. Both pH and temperature affected significantly on brown colority of reaction product, whose velocity became fast with increasing pH and temperature. Drastic decrease in residual reducing sugars and free amino acids appeared until 1 hour, being little affected by reaction temperature. Glutamic acid and cysteine were decreased with reaction time, whereas glycine and methionine remained constant. Forty nine aroma compounds formed through Maillard reaction were isolated and identified with GC/MSD, including 3-methyl butanal, 2-methyl tetrahydrothiophen-3-one, 3,4-dimethylthiophene and 2,4-dimethyl thiazole previously known as natural meat flavors. The sensory evaluation showed that one-hour reaction product was the highest in savory taste and the lowest in nasty taste on the level of 5% significant difference among all reaction products tested in this experiment. From the results above, it could be speculated that the initial stage of Maillard reaction in this experimental system occured until one hour, thereafter, savory taste decreased accompanied by increasing nasty taste with elapsed reaction time.

  • PDF

Current and Future Trends of Accelerators and Antidegradants for the Tire Industry

  • Hong, Sung-W.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.156-176
    • /
    • 1999
  • Rubber chemicals such as accelerators, antidegradants, vulcanizing agents, processing agents and retarders are very important to the production and protection of tires and rubber goods. The use of accelerators and antidegradants are evaluated in various tire components. This paper will focus on how to vulcanize tires economically and maintain the physical properties of each tire component without severe degradation due to oxygen, heat and ozone. Also, new non-nitrosoamine accelerators and non-staining antiozonants will be discussed. Lastly, the future requirements of antidegradants and accelerators in the tire industry will be reviewed. Tires have been vulcanized with Sulfenamides as primary accelerators and either Guamdine's or Thiurams as secondary accelerators to achieve proper properties at service conditions. However, interior components such as the carcass can be vulcanized with Thiazoles as a primary accelerator to cure faster than the external components. Using the combination of Sulfenamide with secondary accelerators in a tire tread compound and the combination of a Thiazole and Guanidine in a carcass compound will be presented with performance data. Uniroyal Chemical and another Rubber Chemical Manufacturer have developed, "Tetrabenzyl Thiuram Disulfide," (TBzTD) as a non-Nitrosoamine accelerator, which could replace Nitrosoamine generating Thiurams. This new accelerator has been evaluated in a tread compound as a secondary accelerator. Also, Flexsys has developed N-t-butyl-2-benzothiazole Sulfenamide (TBSI) as a non-Nitrosoamine accelerator which could replace 2-(Morpholinothio) -benzothiazole (MBS), a scorch delayed Sulfendamide accelerator. TBSI has been evaluated in a Natural Rubber (NR) belt skim compound vs. MBS. An optimum low rolling resistant cure system has been developed in a NR tread with Dithiomorpholine (DTDM). Also, future requirements for developing accelerators will be discussed such as the replacement of DTDM and other stable crosslink systems. Antidegradants are divided into two different types for use in tire compounds. Internal tire compounds such as apex, carcass, liner, wire breaker, cushion, base tread and bead compounds are protected by antioxidants against degradation from oxygen and heat due to mechanical shear. The external components such as sidewall, chafer and cap tread com-pounds are protected from ozone by antiozonants and waxes. Various kinds of staining and non-staining antioxidants have been evaluated in a tire carcass compound. Also, various para-phenylene diamine antiozonants have been evaluated in a tire sidewall compound to achieve the improved lifetime of the tire. New non-staining antiozonants such as 2, 4, 6-tris-(N-1, 4-dimethylpentyl-p-phenylene diamine) 1, 3, 5 Trizine (D-37) and un-saturated Acetal (AFS) will be discussed in the tire sidewall to achieve better appearance. The future requirements of antidegradants will be presented to improve tire performance such as durability, better appearance and longer lasting tires.

  • PDF

Volatile Flavor Components in Chinese Quince Fruits, Chaenomeles sinensis koehne (모과의 휘발성 Flavor 성분에 관한 연구)

  • Chung, Tae-Young;Cho, Dae-Sun;Song, Jae-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.176-187
    • /
    • 1988
  • Volatile flavor components in the Chinese quince fruits were trapped by simultaneous steam distillation-extraction method, and these were fractionated into the neutral, the basic, the phenolic and the acidic fraction. In the identification of carboxylic acids, the acidic fraction was methylated with diazomethane. Volatile flavor components in these fractions were analyzed by the high-resolution GC and GC-MS equipped with a fused silica capillary column. The total of one hundred and forty-five compounds from the steam volatile concentrate of the Chinese quince fruits were identified: they were 3 aliphatic hydrocarbons, 1 cyclic hydrocarbon, 4 aromatic hydrocarbons, 9 terpene hydrocarbons, 17 alcohols, 3 terpene alcohols, 6 phenols, 21 aldehydes, 7 ketones, 28 esters, 27 acids, 3 furans, 2 thiazoles, 2 acetals, 3 lactones and 9 miscellaneous ones. The greater part of the components except for carboxylic acids were identified from the neutral fraction. The neutral fraction gave a much higher yield than others and was assumed to be indispensable for the reproduction of the aroma of the Chinese quince fruits in a sensory evaluation. According to the results of the GC-sniff evaluation, 1-hexanal, cis-3-hexenal, trans-2-hexenal, 2-methyl-2-hepten-6-one, 1-hexanol, cis-3-hexenol, trans, trans-2, 4-hexadienal and trans-2-hexenol were considered to be the key compounds of grassy odor. On the other hand, esters seemed to be the main constituents of a fruity aroma in the Chinese quince fruits.

  • PDF

Antifungal activities for derivatives of 4-isopropyl-3-methylphenol and 5-isopropyl-3-methylphenol against plant pathogenic fungi (4-Isopropyl, 5-isopropyl-3-methylphenol 유도체들의 합성과 식물 병원균에 대한 항균 활성)

  • Choi, Won-Sik;Jang, Soon-Ho;Jang, Do-Yeon;Choi, Kyoung-Gil;Lee, Byung-Ho;Kim, Tae-Jun;Jung, Bong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.249-261
    • /
    • 2006
  • Fifty compounds such as ester, sulfonyl ester, carbamate, ether and phosphoyl ester derivatives of 4-isopropyl-3-methylphenol(I) and 5-isopropyl-3-methylphenol(II) were synthesized. These derivatives were identified by IR, GC/MS and $^1H$-NMR spectra. Their in vitro antifungal activities were tested against 10 plant pathogenic fungi. Among them, several compounds showed potent in vitro antifungal activity. The selected compounds showing potent in vitro antifungal activity were tested for their in vivo antifungal activities against 5 plant diseases such as rice blast, rice sheath blast, cucumber anthracnose, cucumber gray mold and tomato late blight. As a result, 4-isopropyl-3-methylphenyl(2-amino-thiazole-4-yl)methoxyiminoacetate(I-7a) showed a potent in vivo antifungal activity against rice blast. Both methyl (4-isopropyl-3-methylphenoxy)acetate(I-4d) and methyl (5-isopropyl-3-methylphenoxy)acetate(II-4d) effectively inhibited the development of cucumber gray mold.