DOI QR코드

DOI QR Code

Synthesis and antifungal activities of 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-arylthiazol-5-yl]piperidine derivatives on Phytophthora capsici

4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-arylthiazol-5-yl] piperidine 유도체들의 합성과 고추역병균에 대한 살균활성

  • 남석우 (순청향대학교 자연과학대학 생명공학과) ;
  • 이경락 (순청향대학교 자연과학대학 생명공학과) ;
  • 김태준 (동부기술원 농생명연구소) ;
  • 정봉진 (동부기술원 농생명연구소) ;
  • 최원식 (순청향대학교 자연과학대학 생명공학과)
  • Received : 2012.01.08
  • Accepted : 2012.03.14
  • Published : 2012.03.31

Abstract

Fungicidal activities against phytopathogenic fungi of diarylthiazole compound of 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-(4-fluorophenyl)thiazol-5-yl]-1-methylpiperidine (I) have been determined to be excellent and compound I was used as the leading compounds in this study. Furthermore, the compound was synthesized by reacting them with five functional groups, 4-fluoro-3-methylphenyl, 4-fluoro-3-chlorophenyl, 4-chloro-2-fluorophenyl, 4-bromo-3-methylphenyl and 2,4-dichlorophenyl groups instead of 4-fluorophenyl group. Also, 2-amino-, 2-(N-ethoxycarbonyl)piperidin-4-yl-, and 2-piperidin-4-yl-thiazole were introduced as the leads instead of 2-N-methylpiperidine-4-yl-thiazol of compound I. VIII-1~VIII-5 and XIII-1~XV-5 compounds were newly synthesized and their structures were confirmed by $^1H$-NMR-spectrum. The fungicidal activities of all the synthesized compounds against Phytophthora capsici were examined using the whole plant method. Among the VIII-1~VIII-5 and XIII-1~XV-5 chemicals, XIV-3 showed the most potent antifungal activity in vivo. While the $EC_{50}$ and $EC_{90}$ values of the commercial fungicide dimethomorph and I were $4.26{\pm}0.02$, $14.72{\pm}0.05$ and $1.01{\pm}0.11$, $6.31{\pm}0.09mM$, those of 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-(4-chloro-2-fluorophenyl)thiazol-5-yl]-1-methylpiperidine (XIV-3) was $0.98{\pm}0.21$ and $5.85{\pm}0.05mM$. Therefore, XIV-3 can be considered as a viable candidate for the control of plant diseases caused by P. capsici, and further studies will be conducted on the mode of action XIV-3.

Diarylthiazole 화합물인 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-(4-fluorophenyl)thiazol-5-yl]-1-methylpiperidine (I)의 식물병원균에 대한 살균활성은 우수하다고 알려져 있으며, 본 연구의 선도물질로 사용되었다. 화합물(I)의 4-fluorophenyl기 대신 4-fluoro-3-methylphenyl, 4-fluoro-3-chlorophenyl, 4-chloro-2-fluorophenyl, 4-bromo-3-methylphenyl와 2,4-dichlorophenyl기 로, 2-N-methylpiperidine-4-yl-thiazol 대신 2-amino-, 2-(N-ethoxycarbonyl)piperidin-4-yl-, and 2-piperidin-4-yl-thiazole로 치환하여 합성하였다. 새로운 VIII-1~VIII-5, XIII-1~XV-5 화합물들을 합성하였고, 1H-NMR-spectrum으로 구조를 확인하였다. Phytophthora capsici에 대한 모든 합성 화합물들의 살균활성은 whole plant법으로 시험하였고, 그 결과 VIII-1~VIII-5, XIII-1~XV-5 화합물들 중 XIV-3이 in vivo 에서 가장 우수한 살균활성을 나타내었다. 상용되고 있는 살균제인 dimethomorph와 화합물 I의 $EC_{50}$$EC_{90}$ 값이 각각 $4.26{\pm}0.02$, $14.72{\pm}0.05$$1.01{\pm}0.11$, $6.31{\pm}0.09mM$인 반면, 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-(4-chloro-2-fluorophenyl)thiazol-5-yl]-1-methylpiperidine (XIV-3)은 $0.98{\pm}0.21$$5.85{\pm}0.05mM$을 나타내었다. 따라서, 화합물 XIV-3은 P. capsici 에 의해 발생하는 식물병에 대하여 식물보호제로서의 가능성을 보여주었으며, 화합물 XIV-3에 대한 작용 메커니즘에 대한 연구가 필요할 것이라 사료된다.

Keywords

References

  1. Biles, C. L., D. L. Lindsey and C. M. Liddell (1992) Control of Phytophthora root rot of chile Peppersby irrigation practices and fungicides. Crop Prot. 11:225-228. https://doi.org/10.1016/0261-2194(92)90041-3
  2. Biles, C. L., M. M. Wall, M. Waugh and H. Palmer (1993) Relationship of Phytophthora fruit rot to fruit maturation and cuticle thickness of New Mexican-type peppers. Phytopathology. 83:607-611. https://doi.org/10.1094/Phyto-83-607
  3. Choi W. S., S. W. Nam, E. K. Ahn, B. S. Park, S. E. Lee, T. J. Kim and I. Y. Choi (2010) Synthesis and fungicidal activity of N-[4-(4-fluoro)phenyl-2-piperidin-4-yl-thiazol-5-yl] pyrimidin-2-yl-N-phenylamines on Phytophthora capsici. J. Korean Soc. Appl. Biol. Chem. 53:206-214. https://doi.org/10.3839/jksabc.2010.033
  4. Hodges, C. F., D. A. Campbell and Christians (1993) Evaluation of Streptomyces for biocontrol of Bipolaris sorokiniana and Sclerotinia homeocarpa on the phylloplane of Poa pratensis. J. Phytopathol. 139:103-109. https://doi.org/10.1111/j.1439-0434.1993.tb01406.x
  5. Huang J. X., Y. M. Jia, X. M. Liang, W. J. Zho, J. J. Zhang, Y. H. Dong, H. Z. Yuan, S. H. Qi, J. P. Wu, F. H. Chen and D. Q. Wang (2007) Synthesis and fungicidal activity of macrolactams and macrolactones with an oxime ether side chain. J. Agric. Food Chem. 55:10857-10863. https://doi.org/10.1021/jf072733+
  6. James T. P., Clifford Bryant, D. X. Wang, E. D. Dana, L. S. Eduardo, M. R. Robert, V. Shankar, Z. Q. Tian, C. B. Leland, V. M. Rohan, S. Eric, M. John, C. Tobee, C. Harry, W. J. James, M. Mary, R. S. John, Philip Enriquez, Z. W. Yu, M. S. Robert, L. Liu, C. V. Michael, P. M. David, F. Jean-Pierre, P. Peppi, O. Renata, R. Denis, N. Y. Robert, W. Gregg, B. R. Sevgi, J. Colena, B. K. Donald and R. Gideon (2005) Design and synthesis of tri-ring P3 benzamidecontaining aminonitriles as potent, selective, orally effective inhibitors of cathepsin K. J. Med. Chem. 48:7520-7534. https://doi.org/10.1021/jm058198r
  7. Kenneth, C. R., R. H. James, H. D. John, A. W. Scott , E. C. Druie, C.O Gilbert, F. Bohumila and J. S. John (2003) Imidazopyrimidines, potent inhibitors of p38 MAP kinase. Bioorg. Med. Chem. Lett. 13:347-350. https://doi.org/10.1016/S0960-894X(02)01020-X
  8. Kim, D. S., S. J. Chun, J. J. Jeon, S. W. Lee and G. H. Joe (2004) Synthesis and fungicidal activity of ethaboxam against Oomycetes. Pest Manag. Sci. 60:1007-1012. https://doi.org/10.1002/ps.873
  9. Laszlo, R., B. Ernst, E. P. Franco, B. Thomas, F. Roland, G. Hermann, H. Peter, M. Ute and R. Gerard (2004) Novel p38 inhibitors with potent oral efficacy in several models of rheumatoid arthritis. Bioorg. Med. Chem. Lett. 14: 3595-3599. https://doi.org/10.1016/j.bmcl.2004.03.106
  10. Lee, H. S., S. W. Lee, K. Y. Cho, M. K. Kim and Y. J. Ahn (2001) Fungicidal activities of 51 fruit extracts against six phytopathogenic fungi. Agric. Chem. Biotechnol. 44:147-153.
  11. Li, X. H, X. L. Yang, Y. Ling, Z. J. Fan, X. M. Liang, D. Q. Wang, F. H. Chen and Z. M. Li (2005) Synthesis and fungicidal activity of novel 2-oxocycloalkylsulfonylureas. J Agric Food Chem. 53:2202-2206. https://doi.org/10.1021/jf0403944
  12. Morris, P. F., E. Bone and B. M. Tyler (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol. 117: 1171-1178. https://doi.org/10.1104/pp.117.4.1171
  13. Nam S. W., I. Y. Choi and W. S. Choi (2011) Synthesis and antifungal activity of 5-[2-(alkyl-amino)pyrimidin-4-yl]-4- phenylthiazol-2-cycloalkylamine Derivatives on Phytophthora capsici. J. Korean Soc. Appl. Biol. Chem. 54:395-402. https://doi.org/10.3839/jksabc.2011.062
  14. Rajkumar, M., W. H. Lee and K. J. Lee (2005) Screening of bacterial antagonists for biological control of Phytophthora blight of pepper. J. Basic Microbiol. 45:55-63. https://doi.org/10.1002/jobm.200410445
  15. Xu, X., X. Qian, Z. Li, G. Song and W. Chen (2004) Synthesis and fungicidal activity of fluorine-containing phenyliminothiazolidines derivatives. J. Fluorine Chem. 125:1159-1162. https://doi.org/10.1016/j.jfluchem.2004.03.004
  16. Zhiwei, D. F., G. James, Laskey, Shaoxing, Huang, D. B. Kristin, O. M. Roy, J. S. Francis, T. and E. James (2006) Combinatorially selected defense peptides protect plant roots from pathogen infection. Proc. Natl. Acad. Sci. 103:18444-18449. https://doi.org/10.1073/pnas.0605542103
  17. Zhou, T. and Boland (1998) Suppression of dollar spot by hypovirulent isolates of Sclerotinia homeocara. Phytopathol. 88:788-794. https://doi.org/10.1094/PHYTO.1998.88.8.788