• Title/Summary/Keyword: thermotropic liquid crystal polymer (TLCP)

Search Result 9, Processing Time 0.018 seconds

Thermotropic Liquid Crystal Polymer Reinforced Poly(butylene terephthalate) Composites to Improve Heat Distortion Temperature and Mechanical Properties

  • Kim, Jun-Young;Kang, Seong-Wook;Kim, Seong-Hun
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.358-366
    • /
    • 2006
  • Thermotropic liquid crystal polymer (TLCP)-reinforced poly(butylene terephthalate) (PBT) composites were prepared by melt processing. The improvement in the mechanical properties and the processability of the PBT/TLCP composites was attributed to the reinforcing effect by TLCP phase and its well distribution in the PBT matrix. X-ray diffraction results demonstrated that a slow cooling process leads to the thicker lamellar structures and the formation of more regular crystallites in the composites. The incorporation of TLCP improves not only the tensile strength and flexural modulus but also the heat distortion temperature (HDT) of the PBT/TLCP composites. The HDT values of the composites were dependent on TLCP content. The improvement in the HDT values of the PBT/TLCP composites may be explained in terms with the increased flexural modulus, the development of more regular crystalline structures, and the enhancement of the ability of the composites to sustain the storage modulus by TLCP phase. In addition, the simple additivity rule makes it possible to predict the HDT values of the PBT/TLCP composites.

Thermotropic Liquid Crystal Polymer and PBT Blend

  • Lim, Sung-Tack;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.14-19
    • /
    • 1998
  • Increasing demand for high modulus high strength polymeric materials have drawn considerable interest in industry. Thermotropic liquid crystal polymers (TLCP), differing from lyotropic liquid crystal polymers, have excellent melt processability and mechanical property resulting from the high degree of molecular orientation under a shear flow field in the molten state with relatively low viscosity$\^$1,2/.(omitted)

  • PDF

Properties of TLCP/PEN/PET ternary blend fibers with annealing condition (열처리 조건에 따른 TLCP/PEN/PET삼성분계 블렌드 섬유의 특성)

  • 서은수;김준영;김성훈
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.227-230
    • /
    • 2003
  • 열방성 액정고분자 (Thermotropic liquid crystal polymer, TLCP)는 초고강도 섬유로의 응용가능성을 갖고 있어 많은 관심이 집중되고 있으며, 액정고분자의 고강도와 고탄성, 우수한 내열성과 내화학성, 가공시 성형수축률 및 선팽창계수가 작기 때문에 고성능 섬유 및 엔지니어링 플라스틱, 그리고 고분자 복합재료 등 다양한 분야에 응용되고 있다 [1]. 또한 범용성 열가소성 수지와 TLCP와의 용융블렌드는 고분자 복합재료의 강도 및 탄성의 향상뿐만 아니라 우수한 가공성 및 고성능 발현이 가능하기 때문에 현재 많은 연구가 진행되고 있다 [2]. (중략)

  • PDF

Study on the Isothermal Crystallization Behaviors of PEN/TLCP Blends

  • Park, Jong-Ryul;Yoon, Doo-Soo;Lee, Eung-Jae;Bang, Moon-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.56-62
    • /
    • 2016
  • The isothermal crystallization behaviors of blends of poly(ethylene naphthalate) (PEN) and a thermotropic liquid crystalline polymer (TLCP) were investigated by differential scanning calorimetry (DSC) as functions of crystallization temperature and blend composition. Avrami analyses were applied to obtain information on the crystal growth geometry and the factors controlling the rate of crystallization. The crystallization kinetics of the PEN/TLCP blends followed the Avrami equation up to a high degree of crystallization, regardless of crystallization temperature. The calculated Avrami exponents for PEN/TLCP revealed three-dimensional growth of the crystalline region in each blend. The crystallization rate of each blend increased as the crystallization temperature decreased, and decreased as the TLCP content increased. The crystallization of PEN in the blend was affected by the addition of TLCP, which acts as a nucleating agent.

Thermal Decomposition Behavior and Durability Evaluation of Thermotropic Liquid Crystalline Polymers

  • Shin, Sang-Mi;Kim, Seong-Hun;Song, Jun-Kwang
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • The thermal decomposition behavior and degradation characteristics off our different thermotropic liquid crystalline polymers (TLCPs) were studied. The thermal decomposition behavior was determined by means of thermogravimetric analysis (TGA) at different heating rates in nitrogen and air. The order of the thermal stability was as follows: multi-aromatic polyester > hydroxybenzoic acid (HBA)/hydroxynaphthoic acid (HNA) copolyester > HNA/hydroxyl acetaniline (HAA)/terephthalic acid (TA) copolyester > HBA/Poly(ethylene terephthalate) (PET) copolyester. The activation energies of the thermal degradation were calculated by four multiple heating rate methods: Flynn-Wall, Friedman, Kissinger, and Kim-Park. The Flynn-Wall and Kim-Park methods were the most suitable methods to calculate the activation energy. Samples were exposed to an accelerated degradation test (ADT), under fixed conditions of heat ($63{\pm}3^{\circ}C$), humidity ($30{\pm}4%$) and Xenon arc radiation ($1.10\;W/m^2$), and the changes in surface morphology and color difference with time were determined. The TLCPs decomposed, discolored and cracked upon exposure to ultraviolet radiation.

Thermotropic Liquid Crystal Polymer or Silica Nano-particle Filled Polyester Composite Fibers

  • Kim, Seong-Hun;Kim, Jun-Young;Ahn, Seon-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.65-66
    • /
    • 2003
  • Ternary blend fibers (TBFs) based on melt blends of PEN, PET, and TLCP were prepared by melt blending and spinning to achieve high performance fibers. The reinforcement effect and the TLCP fibrillar structure resulted in the improvement of mechanical properties for TBFs. Molecular orientation was an important factor in determining the tensile strength and modulus of TBFs. Another part of this research is silica nano-particle filled PEN composites were melt-blended to improve mechanical and physicalproperties, and processability. The tensile modulus and strength were improved adding silica nano-particles to the PEN. The decreased melt viscosity by the fumed silica resulted in the improvement of the processability. The fumed silica may act as a nucleating agent in the PEN matrix.

  • PDF

On the Composites of Poly(ethylene terephthalate) with a Liquid Crystalline Polyester (액정 폴리에스테르와 폴리(에틸렌 테레프탈레이트)의 복합재료 연구)

  • Choi, Jae-Kon;Bang, Moon-Soo;Han, Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.76-83
    • /
    • 1997
  • Blends of thermotropic liquid crystalline polymer(TLCP) with poly(ethylene terephthalate) (PET) were prepared by the coprecipitation from a common solvent. The blends were processed through a capillary die at $287^{\circ}C$ to produce a monofilament. Morphology and mechanical, thermal properties of blends and composites were examined by differential scanning calorimetry(DSC), tensile test, optical microscopy and scanning electron microscopy. Crystallization kinetics of the blends were investigated by the isothermal DSC method. The Avrami analyses were applied to obtain the information on the crystal growth geometry and factors controlling the rate of crystallization. In the blends, liquid crystalline phase did not reveal any significant macrophase separation and thermal degradation at the processing temperature. From scanning electron micrographs of cryogenic fracture surfaces of extruded fibers, the TLCP domains were found to be more or less finely dispersed with $0.1{\mu}m$ to $0.2{\mu}m$ in size. Interfacial adhesion between the TLCP and matrix polymer was excellent. Tensile strength and modulus of TLCP/PET in-situ fiber composites were enhanced with increasing draw ratio and LCP content.

  • PDF

Study on Rheological Properties of HBA/HNA Thermotropic Liquid Crystalline Polymer (HBA/HNA계 열방성 액정고분자의 유변학적 특성에 관한 연구)

  • Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5216-5220
    • /
    • 2010
  • Rheological measurement of a thermotropic liquid crystalline poymer (TLCP) is not an easy task since their rheological responses are strongly influenced by a thermal history during a processing and thus the reproducibility of the measurement is poor. In order to find out a cause for the strong influence of the thermal history, rheological measurements and DSC observations of the TLCP having various thermal histories were carried out. It was observed that the TLCP used in this study shows liquid-like behavior at a temperature above a crystal-nematic transition temperature ($280^{\circ}C$), but at the same time crystallization can occur at this temperature range and as a consequence the viscosity of the polymer continuously increases. When the samples are heated beyond the $320^{\circ}C$, all crystals thus formed and the thermal histories were observed to disappear. Crystallization rate of the samples annealed above $320^{\circ}C$ was very low at even the lowed temperature ($280^{\circ}C\;{\sim}\;320^{\circ}C$). Therefore, it is concluded that rheological measurements of TLCP used in this study must be performed after annealed above the nematic-isotropic transition temperature for better reproducibility.

Characterization of TLCP Reinforced Polyester Blend Fibers (열방성 액정고분자 강화 폴리에스터 블렌드 섬유의 특성)

  • Kim, Jun-Young;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.223-226
    • /
    • 2003
  • Due to the potential application to ultra-high strength fibers and excellent properties such as high mechanical properties, excellent thermal endurance and chemical stability, thermotropic liquid crystal polymers (TLCPS) are attractive in recent years [1, 2]. Furthermore, the melt blends of TLCPS and conventional thermoplastics have been extensively investigated because of their easy processing and high performance [3-6]. Since high performance polymers generally has high melt viscosity, introduction of the relatively low viscosity components may be one of the more effective techniques to improve processability through the decrement of melt viscosity in melt processing. (omitted)

  • PDF