• Title/Summary/Keyword: thermosyphon

Search Result 117, Processing Time 0.023 seconds

Study on the operating characteristics and system modelling of loop type thermosyphon for using solar thermal energy (태양열을 이용한 상변화 Thermosyphon의 작동특성과 시스템 모델링에 관한 연구)

  • 강명철;이윤준;윤현식;강용혁;윤환기;유창균;이동규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.187-192
    • /
    • 1999
  • 전 세계적으로 무분별한 화석에너지 사용에 따른 환경오염 문제와 에너지원의 고갈로 인하여 태양에너지는 대체에너지원으로 가장 유용한 에너지원이다. 대체에너지원으로의 태양에너지는 다양한 이용분야가 개발되어 실용화되고 있는데 그 중에서 온수급탕을 위한 연구로 자연형 태양열 시스템과 상변화형 시스템이 주류를 이루고 있다. 자연형 시스템의 개발과 실용화로 얻어진 기술을 바탕으로 기후에 적합한 상변화를 이용하는 시스템 개발을 추진하고 있는 실정이다.(중략)

  • PDF

Evaluation on Performance of Hybrid Heating System with Solar Collector of Thermosyphon Tube Type (열사이폰관형 태양열집열기를 주열원으로 하는 하이브리드 난방시스템 성능 평가)

  • Chun, Tae-Kyu;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.356-361
    • /
    • 2012
  • Recently, even though the researches on renewable energy like geothermal, wind, solar energy have been performed widely, its use-rate in total energy is still low. This study was carried out to investigate the performance of hybrid heating system, which consisted of solar collector of thermosyphon tube type and X-L pipe boiler. Especially, new type of solar collector was tried and compared with double tube type and, futhermore, performance and safety on X-L pipe boiler were investigated. As the results, efficiency of solar collector of thermosyphon tube type was higher 20.7% than that of double tube type, mainly due to its structural characteristics. It was also confirmed that temperature of special heat medium used X-L pipe boiler rose up about 20% rapidly in comparison with that of pure water.

The Effect of the Fill Charge Ratio on the Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon (충전율의 변화가 밀폐형 2-상 열사이폰의 열전달 특성에 미치는 영향에 관한 연구)

  • Park, Yong-Joo;Hong, Sung-Eun;Kim, Chul-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1646-1654
    • /
    • 2002
  • A two-phase closed thermosyphon was one of the most effective devices in the removing heat because of its simple structure, thermal diode characteristics, wide operating temperature range and so on. In this study, a two-phase closed thermosyphon(working fluid PFC(C6F14), container copper(inner grooved surface)) was fabricated with a reservoir which can change the fill charge ratio. The experiments were performed in the range of 50~600W heat flow rate and 10~70% fill charge ratio. The results were compared with some correlations that were presented by Rohsenow and Immura et al. in the evaporator, by Nusselt, Gross and Uehara et al. in the condenser and by Cohen and Bayley, Wallis, Kutateladze and Faghri et al. in heat transfer limitation etc.. The heat transfer coefficient at the evaporator increased with the input power. However the effect of the fill charge ratio was nearly negligible. At the condenser, it showed an opposite trend to the evaporator and with increase of the fill charge ratio, showed some enhancement of heat transfer. The heat transport limitation was occurred by the dry-out limitation for small fill charge ratio(10%) and presented about 100W. For the case of large fill charge ratio(Ψ$\geq$40%), it was occurred by the flooding limitation at about 500W.

A Visual Study on Nucleate Boiling Phenomena in a Closed Two-Phase Thermosyphon (밀폐형 2상 열사이폰내의 비등현상에 관한 가시화 연구)

  • 강환국;오광헌;김철주;박이동;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.185-198
    • /
    • 1995
  • This is an experimental study conducted to visualize the nucleate boiling phenomena and flow regimes occurring inside the liquid pool in a closed two-phase thermosyphon. To meet this purpose, an annular-type thermosyphon was designed and manufactured using a glass tube and a stainless steel tube, being assembled axisymmetrically. The heat to be supplied to the working fluid is generated within a very thin layer of stainless steel tube wall by applying a high frequency electromagnetic field through the induction coil, axisymmetrically set around the evaporator zone. Some important results were as follows ; 1) Considering the structural complexity of the tested thermosyphon, it showed good performance for the range of heat flux 2< q" <25kW/$m^2$ and saturation vapor pressure, 0.1<Pv<1.1bar 2) different type of nucleating boiling regimes were observed as described below, -Pulse boiling regime : Flow pattern changed cyclically with time during 1 cycle of pulse boiling process. The onset of Nucleation was followed by expulsive growing of vapor bubble, resulting in the so called blow-up phenomenon, massive expulsion of large amount of liquid around the bubble. -Transient : Some spherical vapor bobbles were observed growing out from 2~3 nucleating sites, that was dispersed at the lower part of the heated tube wall in the liquid pool. But the rest upper region above the nucleating sites were filled with churns or bubbles of vapor. -Continuous nucleate boiling regime : The whole zone of evaporator was filled with lots of spherical vapor bubbles, and the bubbles showed tendency to decrease in diameter as the heat flux increased.ased.

  • PDF

Thermal Energy Storage in Phase Change Material - by Means of Finned Thermosyphon - (상변화 물질을 이용한 에너지의 저장에 관한 연구 - 핀이 부착된 열싸이폰의 이용에 관하여 -)

  • Kim, Kwon-Jin;Yoo, Jai-Suk;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • A two-phase closed thermosyphon with circular fins was used as the heat transfer device for storing the thermal energy in paraffin wax. Experiments were carried out for 4, 6 and 8 fins and for various initial temperatures of the wax and power inputs. Heat transfer characteristics along the heat flow path were investigated as well as the overall performance of the system. Some of the important results are as follows:(1) The thermosyphon heat transfer coefficient and the overall heat transfer coefficient increased with the number of fins, whereas the heat transfer coefficient between the fin and the wax decreased; (2) Facilitation of heat transfer by the fins seemed to alleviate the dry-out phenomenon that had been reported to occur in case of bare thermosyphon; and (3) The horizontal fins had adverse effect of subduing a full scale convection in the wax, and the increase of the number of fins delayed the onset of local convection between the fins.

  • PDF

Theoretical and Experimental Studies on Boiling Heat Transfer for the Thermosyphons with Various Helical Grooves

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1662-1669
    • /
    • 2005
  • Boiling heat transfer characteristics of a two-phase closed thermosyphons with various helical grooves are studied experimentally and a mathematical correlation is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal helical grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tubes is also tested for comparison. Water, methanol and ethanol are used as working fluid. The effects of the number of grooves, various working fluids, operating temperature and heat flux are investigated experimentally. From these experimental results, a mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphons. And also the effects of the number of grooves, the various working fluids, the operating temperature and the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical correlation is obtained. The experimental results show that the number of grooves, the amount of the working fluid and the various working fluids are very important factors for the operation of thermosyphons. Also, the thermosyphons with internal helical grooves can be used to achieve some inexpensive and compact heat exchangers in low temperature.

A Study on the Characteristics of the Earth Heat Extraction Using Termosyphon (Termosyphon의 지열채열 성능에 관한 고찰)

  • Shin, H.J.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.226-233
    • /
    • 1993
  • Thermosyphons are simple devices that can passively transport thermal energy over relatively large distance with little temperature degradation. Especially, the thermosyphon system requires no costly energy input and is completely maintenance free. These attributes permit the use of low grade thermal energy for thermal control of structures including the stabilization of highway foundations. This paper presents the experimental results of the snow melting system in which thermosyphon was utilized to ransfer the earth energy to the pavement to remove snow and ice. The test facility, three earth heated and one unheated test panels, is designed to investigate the variables associated with removing snow and ice from pavement surfaces. The results of these test show that the earth heated panel surface temperature is higher $2{\sim}6^{\circ}C$ than unheated panel when the ambient air temperature is $-7^{\circ}C$. The thermal performance of this earth source thermosyphon system for road heating showed that there was no snow on the heated test panels when the snowfall was 5cm average for the region.

  • PDF

Effect of Micro Grooves on the Performance of Condensing Heat Transfer of the Micro Grooved Thermosyphons

  • Han, Kyu-Il;Cho, Dong-Hyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.184-191
    • /
    • 2002
  • This study concerns the performance of the condensing heat transfer performance of two-phase closed thermosyphons with plain copper tube and tubes having 50, 60, 70, 80, 90 internal micro grooves. Distilled water, methanol, ethanol have been used as the working fluid. The numbers of grooves and operating temperature have been investigated as the experimental parameters. Condensing heat transfer coefficients and heat flux are obtained from experimental data for each case of specific parameter. The experimental results are assessed and compared with existing correlations. The results show that working fluids, numbers of grooves are very important factors for the operation of thermosyphons. The working fluid with high latent heat such as water has a good heat transfer rate compared to methanol and ethanol. The relatively high rate of heat transfer is achieved when the thermosyphon with internal micro grooves is used compared to that with plain tube. Condensing heat transfer coefficient of grooved thermosyphon is 1.5∼2 times higher in methanol and 1.3∼l.5 times higher in ethanol compared to plain tube. The best condensation heat transfer performance is obtained for 60 grooves, and the maximum value of this case is 2.5 times higher than that of the plain tube.

A Study on Application of a Heat Pipe to an Evacuated Glass Tube Solar Collector (진공 유리관 태양열 집열기에 열파이프의 적용을 위한 기초 연구)

  • Kim, Chul-Joo
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 1992
  • This is an experimental work concerning about an application of a heat pipe to an evacuated-glass-tube solar collector system. A methanol heat pipe with length of 0.7 m and diameter of 8 mm was manufactured and tested to compare its performance with that of freon thermosyphon which was originally used in a solar collector system fabricated at Thermomax Co.. Then this methanol heat pipe was utilized to be one component, i.e. heat transfer element, of the present experimental model of a solar collector. This model was performed the operation test as its absorber plate was irradiated by infrared lamps. The following results were obtained. (1) The methanol heat pipe was showed a stable operation when the variation of axial heat transport was $0{\sim}40$ watts and that of inclination angle was $30{\sim}90^{\circ}$. (2) The heat transport capability of the heat pipe was proved to be higher than that of the thermosyphon, because the heat transport limitation of the latter was occured at about 30 watt. (3) The heat pipe in a solar collector was also showed good performance as it transmitted absorbed energy.

  • PDF

A study on the pulse boiling occurring inside the liquid pool of a closed two-phase thermosyphon (밀폐형 2상 열사이폰의 Pool 내부 Pulse Boiling에 관한 연구)

  • Kim, Cheol-Ju;Mun, Seok-Hwan;Gang, Hwan-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1254-1261
    • /
    • 1997
  • Pulse boiling, the unsteady periodic boiling phenomenon appearing in the evaporator of thermosyphons was investigated by many researchers. In the present study investigations were conducted to examine the evolution of flow patterns at the evaporator, and changes in thermodynamic state that each of liquid pool and vapor experiences through 1 cycle of pulse boiling process. For wall and liquid pool the degree of superheat for the onset of nucleation was examined. It revealed that the degree of superheat increased with the increase of pulse period, reaching to 16.5 deg.C and 23 deg.C for liquid pool and evaporator wall respectively at .tau.=80 sec. The data on flow patterns obtained through series of operation tests were plotted in the coordinates of heat flux and vapor pressure to get a regime map. Further this map could be used to figure out the conditions of pulse boiling for a thermosyphon.