• 제목/요약/키워드: thermostable enzyme

검색결과 176건 처리시간 0.026초

Purification and Characterization of a Bacillus sp. DG0303 Thermostable $\alpha$-Glucosidase with Oligo-l,6-glucosidase Activity

  • Park, Jong-Sung;Kim, Il-Han;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권3호
    • /
    • pp.270-276
    • /
    • 1998
  • Extracellular ${\alpha}$-glucosidase was purified to homogeneity from moderately thermophilic Bacillus sp. DG0303. The thermostable ${\alpha}$-glucosidase was purified by ammonium sulfate fractionation, ion-exchange chromatography, preparative polyacrylamide gel electrophoresis (PAGE), and electroelution. The molecular weight of the enzyme was estimated to be 60 kDa by SDS-PAGE. The optimum temperature for the action of the enzyme was at $60^{\circ}C$. It had a half-life of 35 min at $60^{\circ}C$. The enzyme was stable at the pH range of 4.5~7.0 and had an optimum pH at 5.0. The enzyme preparation did not require any metal ion for activity. The thermostable ${\alpha}$-glucosidase hydrolyzed the ${\alpha}$-1,6-linkages in isomaltose, isomaltotriose, and panose, and had little or no activity with maltooligosaccharides and other polysaccharides. The $K_m$ (mM) for p-nitrophenyl-${\alpha}$-D-glucopyranoside (pNPG), panose, isomaltose, and isomaltotriose were 4.6, 4.7, 40.8, and 3.7 and the $V_{max}$(${\mu}mol{\cdot}min^-1$$mg^-1$) for those substrates were 5629, 1669, 3410, and 1827, respectively. The N-terminal amino acid sequence of the enzyme was MERVWWKKAV. Based on its substrate specificity and catalytic properties, the enzyme has been assigned to be an oligo-1,6-glucosidase.

  • PDF

Minor Thermostable Alkaline Protease Produced by Thermoactinomyces sp. E79

  • Kim, Young-Ok;Lee, Jung-Kee;Sunitha, Kandula;Kim, Hyung-Kwoun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.469-474
    • /
    • 1999
  • Thermoactinomyces sp. E79 produced two types of thermostable alkaline proteases extracellularly. A minor protease was separated from a major protease by using DEAE-column chromatography. This enzyme was purified to homogeneity by ammonium sulfate and DEAE-Sepharose ion-exchange chromatography. The purified minor protease showed different biochemical properties compared to the major protease. The molecular mass of the purified enzyme was estimated by SDS-PAGE to be 36 kDa. Its optimum temperature and pH for proteolytic activity against Hammarsten casein were $70^{\circ}C$ and 9.0, respectively. The enzyme was stable up to$75^{\circ}C$ and in an alkaline pH range of 9.0-11.0. The enzyme was inhibited by phenylmethylsulfonyl fluoride (PMSF) and $Hg^{2+}, indicating that the enzyme may be a cysteine-dependent serine protease. In addition, the enzyme cleaved the endoproteinase substrate, succinyl-Ala-Ala-Pro-Phe-p- nitroanilide, and the $K_m$ value for the substrate was 1.2 mM.

  • PDF

Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven

  • Amenabar, Maximiliano J.;Blamey, Jenny M.
    • BMB Reports
    • /
    • 제45권2호
    • /
    • pp.91-95
    • /
    • 2012
  • Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and $70^{\circ}C$, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both $NAD^+$ and $NADP^+$ as electron acceptors, displaying more affinity for $NADP^+$ than for $NAD^+$. No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at $100^{\circ}C$ for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.

Purification and Characterization of a Thermostable Alkaline Phosphatase Produced by Thermus caldophilus GK24

  • Kim, You-Jin;Park, Tae-Shin;Kim, Hyun-Kyu;Kwon, Suk-Tae
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.262-268
    • /
    • 1997
  • The thermophilic and thermostable alkaline phosphatase was purified to near homogeneity from the osmotic lysis of Thermus caldophilus GK24, The purified enzyme had an apparent molecular mass of 108, 000 Da and consisted of two subunits of 54,000 Da. lsoelectric-focusing analysis of the purified enzyme showed a pi of 7.3. The enzyme contained two Cys residues, and its amino acids composition was quite different from that of Thermus aquaticus YT-1 alkaline phosphatase and Escherichia coli alkaline phosphatase, The optimum pH and temperature of the enzyme were 11.0-11.5 and $80^{\circ}C$ respectively. The enzyme was stable in the pH range of 9.0-12.0 at $25^{\circ}C$ for 36 h. and the half-life at $80^{\circ}C$ (pH 11.0) was 6 h. The enzyme was activated by $MgCl_2$ and inhibited by EDTA. With ${\rho}-nitrophenyl\;phosphate\;({\rho}NPP)$ as the substrate, the enzyme had a Michaelis constant $(K_m) $of $3.6{\times}10^{-5}M$, The enzyme preferentially hydrolyzed the phosphomonoester bond of AMP in ribonucleotides and glycerophosphate.

  • PDF

Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4

  • Suleiman D Allison;Nur AdeelaYasid;Fairolniza Mohd Shariff; Nor'Aini Abdul Rahman
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.436-456
    • /
    • 2024
  • Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80℃. In addition, the enzyme showed a half-life of 15 h at 80℃, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.

Progressive Screening of Thermostable Yeasts for Phytase Production

  • Ries, Edi Franciele;Macedo, Gabriela Alves
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.655-660
    • /
    • 2009
  • Biotechnological phytase preparations are commercially available and are currently used in animal feeding. However, thermostability constraints, low yields, and the high cost of the enzyme have limited its use. This study represents a new perspective for the food enzyme market. The research screened thermostable yeast strains for their ability to produce phytase. The screening was carried out with a gradual increase in temperature ($30-48^{\circ}C$). Sixteen strains (1 strain identified as Saccharomyces cerevisiae) maintained the ability to produce phytase at $48^{\circ}C$ and their phytase activity was confirmed using 2 phytase assay methodologies. The yeast strains tested in this study seem to be potential efficient producers of phytase, indicating a possible new source of thermostable phytase of commercial interest, particularly that from S. cerevisiae.

耐熱性 ${\alpha}$-Amylase 高 生産性 Bacillus sp. No. 32H417의 分離 및 酵素 特性 (Isolation of Thermostable ${\alpha}$-Amylase Hyperproducing Bacillus sp. No. 32H417 and Some Properties of the Enzyme)

  • 김무성;오평수
    • 한국미생물·생명공학회지
    • /
    • 제19권2호
    • /
    • pp.122-127
    • /
    • 1991
  • A bacterial strain NO. 32 which produced thermostable ${\alpha}$-amylase was isolated from soil and identified to genus of Bacillus. To enhance ${\alpha}$-amylase productivity, a successive mutation of Bacillus sp. No. 32 was attempted with treatment of N-methyl-N'-nitro-N-nitrosoguanidine (NTG). The resulting mutant, Bacillus sp. No. 32H417, which is risistant to refampicin and deficient in spore formation, produced about 90-fold high level of ${\alpha}$-amylase when compared with parental strain. The properties of the enzyme for thermostability were investigated. The optimal temperature and pH for enzyme reaction were 95$^{\circ}C$ and pH6.5, respectively, in the presence of 0.3mM $Ca^{2+}$ as an effective stabilizer.

  • PDF

Partial Purification and Characterization of Thermostable Esterase from the Hyperthermophilic Archaeon Sulfolobus solfataricus

  • Chung Young Mi;Park Chan B.;Lee Sun Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권1호
    • /
    • pp.53-56
    • /
    • 2000
  • A thermostable esterase from the hyper thermophilic archaeon Sulfolobus solfataricus was partially purified 590-fold with $16.2\%$ recovery. The partially purified esterase had a specific activity of $29.5\;{\mu}mol\;min^{-1}mg^{-1}$ when the enzyme activity was determined using p-nitrophenyl butyrate as a substrate. The apparent molecular weight was about 100 kDa, while the optimum temperature and pH for esterase were $75^{\circ}C$ and 8.0, respectively. The enzyme showed high thermal stability and solvent tolerance in comparison to its mesophilic counterpart. The enzyme also showed chiral resolution activity for (S)-ibuprofen, indicating that S. solfataricus esterase can be used for the production of commercially important chiral drugs.

  • PDF

내열성 Amylase의 생산에 관한 연구 (제1보) 최적배양조건과 효소의 정제 (Studies on the Production of Thermostable Amylase. Part 1. Optimal Culture Conditions and Purification of Enzyme.)

  • 오두환;이강표;변유량;유주현
    • 한국미생물·생명공학회지
    • /
    • 제9권2호
    • /
    • pp.91-97
    • /
    • 1981
  • 고온균중에서 amylase의 생산능이 우수한 Bacillus sp. Y-127을 토양에서 분리, 선정하고 다음과 같은 실험결과를 얻었다. 1. Amylase 생산의 최적배양조건은 nutrient broth 0.8% (w/v), soluble starch 2 % (w/v), urea 0.2 % (w/v, N기준), MgSO$_4$.7$H_2O$ 0.02 % (w/v, Mg기준), $K_2$HPO$_4$ 0.02 % (w/v, P기준), yeast extract 0.2 % (w/v), 6$0^{\circ}C$, pH7.0이었다. 2. Amylase를 (NH$_4$)$_2$SO$_4$침전, 투석, Sephadex G-150 column chromatography 및 Sephadex G-150 column rechromatography를 통해 정제한 결과 123배의 비활성 증가를 볼 수 있었다. 3. Amylase의 pH 안정성은 pH 4.0에서 7.0 사이였으며, 온도에 따른 효소의 불활성도는 온도가 증가함에 따라 증대되었다.

  • PDF

Purification and Partial Characterization of Thermostable Carboxyl Esterase from Bacillus stearothermophilus L1

  • Kim, Hyung-Kwoun;Park, Sun-Yang;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권1호
    • /
    • pp.37-42
    • /
    • 1997
  • A bacterial strain L1 producing a thermostable esterase was isolated from soil taken near a hot spring and identified as Bacillus stearothermophilus by its microbiological properties. The isolated thermostable esterase was purified by ammonium sulfate fractionation, ion .exchange and hydrophobic interaction chromatographies. The molecular weight of the purified enzyme was estimated to be 50,000 by SDS-PAGE. Its optimum temperature and pH for hydrolytic activity against PNP caprylate were $85^{\circ}C$ and 9.0, respectively. The purified enzyme was stable up to $70^{\circ}C$ and at a broad pH range of 4.0-11.5 in the presence of bovine serum albumin. The enzyme was inhibited by phenylmethylsulfonyl fluoride and diethyl p-nitrophenyl phosphate, indicating the enzyme is a serine esterase. The enzyme obeyed Michaelis-Menten kinetics in the hydrolysis of PNPEs and had maximum activity for PNP caproate ($C_6$) among PNPEs ($C_2-C_12$) tested.

  • PDF