• Title/Summary/Keyword: thermoplastic composite

Search Result 179, Processing Time 0.028 seconds

Evaluation of Stamp Forming Process Parameters for CF/PEKK Thermoplastic Composite Using Finite Element Method (고속 열 성형 유한요소해석을 활용한 CF/PEKK 열가소성 복합재 구조물 제작 공정 예측 및 검증)

  • Lee, Keung-In;Choe, Hyeon-Seok;Kwak, June-Woo;Lee, Jun-Sung;Ju, Hyun-Woo;Kweon, Jin-Hwe;Nam, Young-Woo
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.296-304
    • /
    • 2021
  • This study presented the evaluation of the stamp forming process for L-shape CF/PEKK thermoplastic composite using the finite element model. The formability of three different trimming allowances has been examined for representative product geometry. The results showed that those manufactured by high trimming allowance showed more excellent formability in those areas. Moreover, the effects of the trimming allowances on the stress, thickness, wrinkle distributions of thermoplastic composites fabricated with the stamp forming process were evaluated. The comparison of the simulation and experimental results for the thickness and wrinkle distributions proved the accuracy of the stamp forming model. The crystallinity of the composite was performed by differential scanning calorimetry (DSC). The void content of the composite was evaluated by matrix digestion. Then, the fabricated structure was characterized and achieved high quality in crystallinity and void content. Consequently, the presented FEM modeling shows excellent potential for application in the aircraft product design process. This pragmatic approach could efficiently offer a valuable solution for the thermoplastic composite manufacturing field.

Development of a Thermoplastic Composite Parabolic Antenna Reflector using Automated Fiber Placement Method (자동섬유적층법을 이용한 열가소성 복합재료 접시형 안테나 반사판 개발)

  • Kim, Jin-Bong;Kim, Tae-Wook
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.15-21
    • /
    • 2006
  • It is very difficult to make complex 3 dimensional curved-shape composite laminates using the advanced unidirectional composite prepregs. This study shows development process of subscale composite parabolic antenna reflector using unidirectional AS4/PEEK prepreg tapes. The AS4/PEEK thermoplastic composite materials are known to have good thermal and chemical stabilities in addition to their high specific strength and modulus. Various lamination methods were investigated through finite element analyses to make up the laminate design of the reflector. The automated fiber placement method was used to fabricate the reflector. The thermal expansion test using full-bridge strain gage circuits was done to verity the performance of the composite product.

Effect of Cooling Rate on Mechanical Properties of Carbon/Nylon66 Composites (카본/나일론 복합재료의 냉각속도에 따른 기계적 특성변화)

  • 홍순곤;변준형;황병선;강범수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.122-125
    • /
    • 2001
  • The objective of this research is to develop hybridized yarns for thermoplastic composites, and to examine tile effect of cooling rate on mechanical properties of the composites. The co-braided yarn utilizing carbon fibers as reinforcements and Nylon 66 fibers as matrix materials has been fabricated. Thermoplastic composites have been manufactured by the hot-press forming process. For the processing conditions, cooling rates of $-2.5^{\circ}C$/min and $-60^{\circ}C$/min have been considered. Three-point bending test and losipescu shear test were performed to investigate the effect of the cooling rate and the surface treatment of carbon fibers. SEM photographs were used to investigate the fracture surfaces of the tested samples. The cooling rate of $-60^{\circ}C$/min resulted in the higher strength and elastic modulus for bending and shear tests. The composites of the epoxy-sized carbon fibers showed the lowest strength due to the degradation of the sizing material during the thermoforming process.

  • PDF

Development and Evaluation of Turbulent Air Mixing Process for Manufacturing Wood Fiber and Thermoplastic Fiber Composites

  • Yoon, Hyoung-Un;Eom, Young-Geun;Park, Jong-Young;Kong, Young-To
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.38-44
    • /
    • 1998
  • A new device that uses turbulent air for mixing wood fibers with thermoplastic fibers was designed and its mixing effectiveness was evaluated in wood fiber and polypropylene fiber composites. Composites made by the turbulent air mixing (TAM) process performed better than composites made by the conventional Rando-Webber forming or nonwoven web process with an additional needling step. Thus, the TAM process proved to be a simple and efficient method in mixing wood fibers with short thermoplastic fibers for the production of wood fiber and thermoplastic fiber composites.

  • PDF

Cover Requirements for Corrugated HDPE and PVC Pipes Used for Cross-drains in Highway Construction (고속도로 하부 횡단 배수시설로 사용되는 파형 플래스틱 관의 덮개 요건)

  • Kang, Junsuk;Davidson, James S.;Lim, Jeong-Hyeon;Kang, Young Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • This project investigated the use of two types of thermoplastic pipes, High-Density Polyethylene (HDPE) and Poly-vinyl Chloride (PVC), as cross-drains under highways. Pipes ranging from 0.3 m (12 in.) to 1.5 m (60 in.) in diameter were evaluated under deep fills, minimum cover, and construction loads. In addition to a comprehensive literature review, an analytical study into the allowable fill heights for thermoplastic pipes and a field study to observe the installation and performance of the pipe in service conditions were conducted. Based on the study findings, recommendations regarding how and when thermoplastic pipe should be installed are provided.

Study of the Inhibition on the Combustion of PEBAX/AP Thermoplastic Propellant (PEBAX/AP 열가소성 고체추진제의 연소 억제 방안 연구)

  • Lee, Hyoungjin;Jung, Haeyoung;Cho, Junhyun;Lee, Youngguen;Lee, Hojin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.18-26
    • /
    • 2013
  • This study suggested techniques to reduce burning rate and their effects for the AP thermoplastic composite propellant. Burning rate obtained through ground tests using a small size motor were analyzed to investigate the effects of AP particle size and LiF of 0.5~2.0% on the inhibition reaction for the PEBAX/AP thermoplastic propellant. The results showed that utilization of large size particle of AP and addition of LiF under 2.0% can reduce the burning rate sufficiently and their quantitative effects were suggested in this paper.

The Change of Mechanical Properties with Forming Conditions of Thermoplastic Composite in Compression Molding (열가소성 복합재료의 압축성형조건에 따른 기계적 특성 변화)

  • Lee, Jung-Hui;Lee, Ho-Eon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1416-1422
    • /
    • 2001
  • The objective of this work was to characterize mechanical properties of thermoplastic composites with various forming conditions in compression molding. Randomly oriented long glass fiber reinforced polypropylene(PP) was used in this work. The composite materials contained 20%, 30%, and 40% glass fiber by weight. Compression molding was conducted at various mold temperatures and charge sizes. The temperatures on the mold surface and at the material in the mid-plain were monitored during the molding. Differential Scanning Calorimeter was used to measure crystallinity at both in-side and out-side of the sheet material. Crystallinity at each temperature was also measured by X-ray diffractometer. Dimensional stability was studied at various conditions with the spring forward angle. Among the processing parameters, the crystallization time at the temperature above 130$^{\circ}C$, was found to be the most effective. Spring-forward angle was reduced and the tensile modulus was increased as the mold temperature increased.

Surface Treatment of Silica Nanoparticles and the Characteristics of their Composites with Thermoplastic Polyurethane Elastomer (실리카 나노입자의 표면처리와 이를 포함한 열가소성 폴리우레탄 복합소재의 특성)

  • Yoo, Sun Hwa;Song, Hyun Jae;Kim, Chang Keun
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.721-726
    • /
    • 2012
  • Thermoplastic polyurethane (TPU) elastomer is used as an encapsulant in undersea sonar devices. A new material for sonar encapsulant exhibiting better mechanical strength than TPU along with a lower swelling ratio for seawater and oil is required to prolong its application. TPU grafted silica nanoparticles (TPU-g-silica) were prepared and then they were melt mixed with TPU to fabricate desirable composites for underwater applications. The composite containing silica nanoparticles exhibited better tensile strength and lower swelling ratios in the seawater and oil than TPU regardless of the surface treatment of the silica particles. At fixed silica content in the composite, the TPU/TPU-g-silica composite exhibited better tensile strength and lower swelling ratio than the TPU composite with the pristine silica particles. Furthermore, the TPU/TPU-g-silica composite exhibited enhanced tensile strength as compared to TPU after being impregnated with oil.

Fabrication and Characterization of 3D Woven Textile Reinforced Thermoplastic Composites (3차원 직조형 열가소성수지 복합재료 제조 및 특성화)

  • 홍순곤;변준형;이상관
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.33-40
    • /
    • 2003
  • In order to overcome one of the most pronounced shortcomings of conventional laminated composites, such as the low damage tolerance due to delamination, the thermoplastic materials and 3D (three-dimensional) preforms have been utilized in the manufacture of composite materials. From the newly developed process termed as the co-braiding, hybrid yarns of the thermoplastic fibers (PEEK) and reinforcing fibers (carbon) have been fabricated. In order to further enhance the delamination suppression, through thickness fibers have been introduced by way of 3D weaving technique in the fabrication of textile preforms. The preforms have been thermoformed to make composite materials. Complete impregnation of the PEEK into the carbon fiber bundles has been confirmed. For the comparison of mechanical performance of 3D woven composites, quasi-isotropic laminates using APC-2/AS4 tapes have been fabricated. Tensile and compressive properties of both the composites have been determined. Furthermore. the open hole, impact and CAI(Compression After Impact) tests were also carried out to assess the applicability of 3D woven textile reinforced thermoplastic composites in aerospace structures.