Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.6.721

Surface Treatment of Silica Nanoparticles and the Characteristics of their Composites with Thermoplastic Polyurethane Elastomer  

Yoo, Sun Hwa (School of Chemical Engineering and Materials Science, Chung-Ang University)
Song, Hyun Jae (School of Chemical Engineering and Materials Science, Chung-Ang University)
Kim, Chang Keun (School of Chemical Engineering and Materials Science, Chung-Ang University)
Publication Information
Polymer(Korea) / v.36, no.6, 2012 , pp. 721-726 More about this Journal
Abstract
Thermoplastic polyurethane (TPU) elastomer is used as an encapsulant in undersea sonar devices. A new material for sonar encapsulant exhibiting better mechanical strength than TPU along with a lower swelling ratio for seawater and oil is required to prolong its application. TPU grafted silica nanoparticles (TPU-g-silica) were prepared and then they were melt mixed with TPU to fabricate desirable composites for underwater applications. The composite containing silica nanoparticles exhibited better tensile strength and lower swelling ratios in the seawater and oil than TPU regardless of the surface treatment of the silica particles. At fixed silica content in the composite, the TPU/TPU-g-silica composite exhibited better tensile strength and lower swelling ratio than the TPU composite with the pristine silica particles. Furthermore, the TPU/TPU-g-silica composite exhibited enhanced tensile strength as compared to TPU after being impregnated with oil.
Keywords
thermoplastic polyurethane; silica nanoparticles; surface treatment; composite; underwater application;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. H. Sperling, Introduction to Physical Polymer Science, Wiley & Sons, New York, 1986.
2 M. S. Jo, J. S. Choi, S. J. Lee, J. C. Goo, and Y. K. Lee, Polymer(Korea), 34, 104 (2010).
3 G. M. Stack, J. M. Miller, and E. Y. Chang, J. Appl. Polym. Sci., 42, 911 (1991).   DOI
4 R. N. Capps, J. Acoust. Soc. Am., 78, 406 (1985).   DOI
5 H. G. Im, K. R. Ka, and C. K. Kim, Ind. Eng. Chem. Res., 49, 7336 (2010).   DOI   ScienceOn
6 T. S. Ramotowski, US Patent 0265384A1 (2007).
7 A. L. Carpenter, US Patent 5,272,679 (1992).
8 D. C. Evans, US Patent 7,322,379 (2008).
9 E. M. Wouterson, F. Y. C. Boey, X. Hu, and S. C. Wong, Compos. Sci. Technol., 65, 1840 (2005).   DOI   ScienceOn
10 G. Tagliavia, M. Porfiri, and N. Gupta, J. Compos. Mater., 43, 561 (2009).   DOI
11 J. S. Huang and L. J. Gibson, J. Mech. Phys. Solids, 41, 55 (1993).   DOI   ScienceOn
12 G. M. Gladysz, B. Perry, G. McEachen, and J. Lula, J. Mater. Sci., 41, 4085 (2006).   DOI
13 H. S. Kim and M. A. Khamis, Compos. Part A, 32, 1311 (2001).   DOI   ScienceOn
14 J. W. Kim, L. U. Kim, and C. K. Kim, Biomacromolecules, 8, 215 (2007).   DOI   ScienceOn
15 K. C. Cha, J. S. Song, S. M. Lee, and M. S. Moon, Polymer(Korea), 34, 8 (2010).
16 J. S. Im, E. Jeong, S. J. In, and Y. Lee, Comp. Sci. & Tech., 70, 763 (2010).   DOI   ScienceOn
17 T. P. Chua, M. Mariatti, A. Azizan, and A. A. Rashid, Comp. Sci. & Tech., 70, 671 (2010).   DOI   ScienceOn
18 Y. Huang, C. M. Ma, S. Yuen, C. Chuang, H. Kuan, C. Chiang, and S. Wu, Mat. Chem. & Phys., 129, 1214 (2011).   DOI   ScienceOn