• Title/Summary/Keyword: thermophilus

Search Result 243, Processing Time 0.022 seconds

Characteristics of the Bacteriocin Produced from Streptococcus salivarius subsp. thermophilus (Streptococcus salivarius subsp. thermophilus가 생산하는 Bacteriocin의 특성)

  • 이장혁;장효일
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 1994
  • One bacterial strain, that had made the largest inhibition zone at the antagonism assay and also that lost the inhibition activity by the protease treatment, was isolated from raw milk. That strain was identified as Streptococcus salivarius subsp. thermophilus. The specific growht rate of this strain was maximum at 45$\circ $C. However, at this temperature the strain produced no bacteriocin. The bacteriocin activity was quite stable even at high temperature. Moreover, the activity of the vacteriocin was sensitive to proteases. but not to $\alpha $-amylase, DNase I, or RNase.

  • PDF

COMPARATIVE STUDIES ON INDIGENOUS STARTER CULTURE STRAINS FOR THEIR RATE OF ACID PRODUCTION

  • Masud, T.;Sultana, K.;Kausar, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.559-561
    • /
    • 1992
  • Three strains each of L. bulgaricus and S. thermophilus isolated from indigenous dahi were examined for their rate of acid production and corresponding pH values in skim milk medium incubated at $40^{\circ}C$. No significant increase in titrable acidity or decrease in pH were recorded from initial period up to 2nd hour in both the strains. Following this period, however, there was a continuous increase in titrable acidity and a decrease in pH value in the milk for all the tested strains. Further it was observed that there was a variation among these strains for their acid production rate. High rate of acid production was recorded for the L. bulgaricus as compared to S. thermophilus. The results further, suggested that efforts should be made to select a proper pair of L. bulgaricus and S. thermophilus according to their rate of acid production, at a particular temperature in order to produce a good quality product.

β-Galactosidase Gene of Thermus thermophilus KNOUC112 Isolated from Hot Springs of a Volcanic Area in New Zealand: Identification of the Bacteria, Cloning and Expression of the Gene in Escherichia coli

  • Nam, E.S.;Choi, J.W.;Lim, J.H.;Hwang, S.K.;Jung, H.J.;Kang, S.K.;Cho, K.K.;Choi, Y.J.;Ahn, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1591-1598
    • /
    • 2004
  • To isolate the $\beta$-galactosidase producing thermophilic bacteria, samples of mud and water were collected from hot springs of avolcanic area near Golden Springs in New Zealand. Among eleven isolated strains, the strain of KNOUC112 produced the highest amounts of $\beta$-galactosidase at 40 h incubation time (0.013 unit). This strain was aerobic, asporogenic bacilli, immobile, gram negative, catalase positive, oxidase positive, and pigment producing. Optimum growth was at 70-72$^{\circ}C$, pH 7.0-7.2, and it could grow in the presence of 3% NaCl. The main fatty acids of cell components were iso-15:0 (30.26%), and iso-17:0 (31.31%). Based on morphological and biochemical properties and fatty acid composition, the strain could be identified as genus Thermus, and finally as Thermus thermophilus by phylogenetic analysis based on 16S rRNA sequence. So the strain is designated as Thermus thermophilus KNOUC112. A gene from Thermus thermophilus KNOUC112 encoding $\beta$-galactosidase was amplified by PCR using redundancy primers prepared based on the structure of $\beta$-galactosidase gene of Thermus sp. A4 and Thermus sp. strain T2, cloned and expressed in E. coli JM109 DE3. The gene of Thermus thermophilus KNOUC112 $\beta$-galactosidase(KNOUC112$\beta$-gal) consisted of a 1,938 bp open reading frame, encoding a protein of 73 kDa that was composed of 645 amino acids. KNOUC112$\beta$-gal was expressed as dimer and trimer in E. coli JM109 (DE3) via pET-5b.

Genomic Analysis of Dairy Starter Culture Streptococcus thermophilus MTCC 5461

  • Prajapati, Jashbhai B.;Nathani, Neelam M.;Patel, Amrutlal K.;Senan, Suja;Joshi, Chaitanya G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.459-466
    • /
    • 2013
  • The lactic acid bacterium Streptococcus thermophilus is widely used as a starter culture for the production of dairy products. Whole-genome sequencing is expected to utilize the genetic basis behind the metabolic functioning of lactic acid bacterium (LAB), for development of their use in biotechnological and probiotic applications. We sequenced the whole genome of Streptococcus thermophilus MTCC 5461, the strain isolated from a curd source, by 454 GS-FLX titanium and Ion Torrent PGM. We performed comparative genome analysis using the local BLAST and RDP for 16S rDNA comparison and by the RAST server for functional comparison against the published genome sequence of Streptococcus thermophilus CNRZ 1066. The whole genome size of S. thermophilus MTCC 5461 is of 1.73Mb size with a GC content of 39.3%. Streptococcal virulence-related genes are either inactivated or absent in the strain. The genome possesses coding sequences for features important for a probiotic organism such as adhesion, acid tolerance, bacteriocin production, and lactose utilization, which was found to be conserved among the strains MTCC 5461 and CNRZ 1066. Biochemical analysis revealed the utilization of 17 sugars by the bacterium, where the presence of genes encoding enzymes involved in metabolism for 16 of these 17 sugars were confirmed in the genome. This study supports the facts that the strain MTCC 5461 is nonpathogenic and harbors essential features that can be exploited for its probiotic potential.

Fermentation and Quality Characteristics of Soy Yogurt incorporating Insoluble Components of Domestic Soybeans (국내산 대두의 불용성 물질을 포함한 두유 요구르트의 발효 및 품질 특성)

  • Lim, Seung-Yong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.6
    • /
    • pp.491-497
    • /
    • 2016
  • The objective of this research was to determine the fermentation and quality properties of soy yogurt incorporating insoluble components fermented with Streptococcus thermophilus (S. thermophilus) and Lactobacillus bulgaricus (L. bulgaricus) for 24h. Boiled soybeans were ground and reconstituted into equivalent total solids (18%). After soymilk was homogenized with sugar, it was pasteurized in a water bath at $90^{\circ}C$ for 30 min. Two kinds of lactic acid bacteria were inoculated into two types of soymilk after cooling down $40{\sim}45^{\circ}C$ and fermentation at $37^{\circ}C$ for 24h. Titrable acidity, pH, viscosity, sugar content, and number of viable cells were determined in triplicate. Soy yogurt fermented with L. bulgaricus did not reach pH 4.5, where as S. thermophilus was considered good for achieving pH 4.08 and titratable acidity of 2.27% for 24 h. Soy yogurt fermented with S. thermophilus had a higher viscosity and lower sugar contents than that fermented with L. bulgaricusas incubation time increased. Total viable count was $1.80{\times}10^{10}CFU/mL$ on S. thermophilus and $2.16{\times}10^8CFU/mL$ on L. bulgaricus after 24 h at $37^{\circ}C$. However, there was no significant difference in sensory intensities and preference between the two samples. As a result, S. thermophilus was identified as a better culture than L. bulgaricus for the manufacture of soy yogurt incorporating insoluble components.

Characteristics of Exopolysaccharide Produced in Goat Milk Yogurt Cultured with Streptococcus thermophilus LFG Isolated from Kefir (Kefir에서 분리한 Streptococcus thermophilus LFG를 배양한 산양유 발효물에서 분리된 다당체의 특성)

  • Lim, Young-Soon;Lee, Si-Kyung
    • Food Science of Animal Resources
    • /
    • v.29 no.2
    • /
    • pp.143-150
    • /
    • 2009
  • This study was carried out to investigate the properties of crude exopolysaccaride (CEPS) produced by Streptococcus thermophilus LFG in goat milk. The yields of CEPS from yogurt cultured with Str. thermophilus LFG were greater at higher temperatures $(40-45^{\circ}C)$ than at lower temperatures $(30-35^{\circ}C)$. Goat milk yogurt had lower viscosity values than cow milk yogurt. However, the CEPS yield was higher in goat milk yogurt than in cow milk yogurt. The yields of CEPS from yogurt were also higher in cultured milk containing 3% glucose (14-21%), and 3% sucrose (4-16%) relative to the control yogurt. Antioxidant activities were higher in goat milk yogurt supernatant (21%) and its CEPS (28%) than cow milk yogurt supernatant (11%) and its CEPS (24%). The amino acid contents of CEPS were higher in yogurt using goat milk than that using cow milk. The CEPS extracted from goat milk yogurt produced by Str. thermophilus LFG consists of carbohydrate (37% w/w) and protein (63% w/w). The CEPS consisted of monosaccharides such as glucose 56.45% (w/w), galactose 42.35% (w/w), galactosamine 1.37% (w/w), glucosamine 1.09% (w/w) and fucose 0.27% (w/w).

Pysicochemical and Bacteriological Properties of Yogurt made by Single or Mixed Cultures of L. bulgaricus and S. thermophilus (L. bulgaricus 와 S. thermophilus 의 단독 및 혼합배양에 의한 요구르트의 이화학적 미생물학적 특성)

  • Lee, Shin-Ho;Koo, Young-Jo;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.140-147
    • /
    • 1988
  • The pysicochemical and bacteriological properties of yogurts made by single or mixed cultures of L. bulgaricus FRI025 and S. thermophilus CHI were investigated. L. bulgaricus FRI025 which was isolated from raw milk was selected as starter culture among 22 strains of lactic culture by measuring viscosity, flavor, growth and acid production ability. The acid production and number of viable cell were increased by using L. bulgaricus FRI025 and S. thermophilus CHI together in ratio of apporximately 1:1. The pH, titratable acidity, viable cell number and viscosity of yogurt were 4.08, 1.14%, $2.5{\times}10^{10}/ml$ and 2100 cp after 9 hours incubation at $40^{\circ}C$, respectively. The pH and viable cell number were decreased on the other hand titratable acidity and viscosity were increased after 7 days of storage at $4^{\circ}C$. The changes of quality did not show significantly after storage. The selected starter was much higher than commercial yogurt starter in the acid production and growth of starter. The yogurt nanufactured with selected starter was better than with commercial yogurt in sensory evalution such as taste, texture, flavor and overall acceptability.

  • PDF

Effects of Ginseng Extract on the Acid Production and Growth of Yoghurt Starter (인삼(人蔘)Extract가 Yoghurt Starter의 산생성(酸生成) 및 증식(增殖)에 미치는 영향(影響))

  • Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.21 no.2
    • /
    • pp.111-121
    • /
    • 1994
  • In order to investigate the effects of ginseng extract on the acid production and bacterial growth in the skim milk medium, ginseng extract was added to skim milk medium for 0.3 to 2.4% and the medium was fermented by Str. thermophilus, L. bulgaricus and mixed strain with both bacteria. The acidity and bacterial number were examined by incubation time. The results were summarized as follows: 1. The acidity of medium without ginseng extract after 12 hours incubation by Str. thermophilus was 11.1% and that by L. bulgaricus was 1.01%, whereas that of medium with ginseng extract was 1.08~0.61% for Str. thermophilus and 0.99~0.49% for L. bulgaricus. Therefore, acid production was inhibited by ginseng extract. 2. The number of bacteria in the medium without ginseng extract after 12 hours incubation was $5.2{\times}10^8/m{\ell}$ for Str. thermophilus and $3.2{\times}10^8/m{\ell}$ for L. bulgancus, whereas that in the medium with ginseng extract was $3.6{\times}10^8/m{\ell}{\sim}1.3{\times}10^8/m{\ell}$ for Str. thermophilus and $2.9{\times}10^8/m{\ell}$ and $1.4{\times}10^8/m{\ell}$ for L bulgancus. Therefore, the number of bacteria was decreased by the amount of ginseng extract increased. 3. However, when skim milk medium was fermented by mixed strains, ginseng extract was not affected on the acid production and bacterial number. On the contrary, in some case, the number of bacteria was increased by addition of ginseng extract.

  • PDF