• Title/Summary/Keyword: thermophilic anaerobic digestion

Search Result 52, Processing Time 0.025 seconds

Pre-treatment Technology of Wastewater Sludge for Enhanced Biogas Production in Anaerobic Digestion (혐기소화에서의 바이오가스 생산 증진을 위한 슬러지 전처리 기술)

  • Kim, Dong-Jin
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.355-369
    • /
    • 2013
  • Economic feasibility is one of the most important factors in energy production from regenerative biomass. From the aspect, biogas from anaerobic digestion of wastewater sludge is regarded as the most economical because of its cheap substrate and additional income from the disposal of waste sludge. Sludge hydrolysis has been regarded as the rate limiting step of anaerobic digestion and many sludge pre-treatment technologies have been developed to accelerate anaerobic sludge digestion for enhanced biogas production. Various sludge pre-treatment technologies including biological, thermo hydrolysis, ultrasonic, and mechanical methods have been applied to full-scale systems. Sludge pre-treatment increased the efficiency of anaerobic digestion by enhancing hydrolysis, reducing residual soilds, and increasing biogas production. This paper introduces the characteristics of various sludge pre-treatment technologies and the energy balance and economic feasibility of each technology were compared to prepare a guideline for the selection of feasible pre-treatment technology. It was estimated that thermophilic digestion and thermal hydrolysis were most economical technology followed by Cell rupture$^{TM}$, OpenCEL$^{TM}$, MicroSludge$^{TM}$, and ultrasound. The cost for waste sludge disposal shares the biggest portion in the economic analysis, therefore, water content of the waste sludge was the most important factor to be controlled.

pH Effect at Thermophilic Solubilization Pretreatment of Food Waste in Two Phase Anaerobic Digestion (2상 혐기성 소화에서 음식물쓰레기의 고온 가용화 전처리 pH 영향)

  • Lee, Won-Soo;Kang, Young-Jun;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.452-458
    • /
    • 2016
  • The study on pH control at the themophilic solubilization (pretreatment process) was investigated in order to improve the methane gas production of two phase anaerobic digestion of food waste. From a batch experiment, it was observed that the solubilization efficiency was increased from 26.2% to 47.1% and 55.6% by the pH increament from $4.20{\pm}0.40$ (without pH control) to $7.00{\pm}0.50$, and $12.00{\pm}0.50$, respectively. However there was immaterial increase (8.5%) in solubilization efficiency when the pH was increased from $7.00{\pm}0.50$ to $12.00{\pm}0.50$. The two phase anaerobic digestion system was operated for laboratory scale experiment under the solubilization condition of pH $4.20{\pm}0.40$ (Run1) and $7.00{\pm}0.50$ (Run2). Higher soluble chemical oxygen demand (SCOD) and total volatile fatty acid (TVFA) concentration were observed in Run2 throughout the system resulted by the solubilization effect at the pH $7.00{\pm}0.50$. The TVFA concentration in acidogenic reactor was 18.4 g/L which was 1.8 times higher than the result of Run1. Consequently the methane gas production was enhanced to 0.333 L/g VS in the methanogenic reactor, which is 18% higher than the result (0.282 L/g VS) of Run1.

Effects of diverse Pre-treatment methods on the sludge digestion and methane production in combined mesophilic anaerobic and thermophilic aerobic sludge digestion process (다양한 전처리에 따른 중온혐기-고온호기 복합 슬러지 처리공정의 슬러지 처리효율 및 메탄 생성량 변화)

  • Ha, Jeong Hyub;Park, Jong Moon;Park, Sang Kyu;Cho, Hyun Uk;Jang, Hyun Min;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.43-52
    • /
    • 2013
  • In this study, various influent sludge pre-treatment methods were adopted to investigate their effects on the sludge digestion and methane production in combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale sewage sludge digestion process was operated during 4 phases using different feed sludge pre-treatment strategies. In phase 1, feed sludge was supplied without any pre-treatment. In contrast, in phases 2, 3 and 4, thermal, thermal-alkaline and long time alkaline treatment (7 days) were applied to influent sludge, respectively. With sludge pre-treatment, TCOD removal was drastically increased from 44% to 76% from phases 1 to 4, respectively. Also, pre-treatment of feed sludge significantly improved the methane production rate of MAD, showing an increment from 101 to 165-256mL/L/day. Meanwhile, TCOD removal and methane production at phase 4 were not increased, compared to those at phase 3. Based on the experimental results, it was concluded that pre-treatment of feed sludge significantly increases the efficiency of sludge digestion and thermal-alkaline method was the most effective method among the pre-treatment methods examined.

Kinetics of Anaerobic Digestion : Temperature Effects on Highly Loaded Digesters (혐기성소화(嫌氣性消化)의 동역학(動力學) : 고부하시(高負荷時)의 온도영향(溫度影響))

  • Chang, Duk;Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.59-67
    • /
    • 1988
  • Anaerobic digestion at the temperature of $35-55^{\circ}C$ was conducted using an artificial sludge of uniform composition. The hydraulic retention time of 5 days was chosen because the temperature effect was effectively shown at a high loading. Inhibition of the methane fermentation decreased as the temperature increased. Acid fermentation was prevalent at the mesophilic and intermediate temperatures, while active methane fermentation took place at $55^{\circ}C$. Temperature not only affects activity of the microorganisms, but also affects physical and chemical properties of the sludge, Digestion inhibition was much reduced when the feed sludge was diluted, and active methane fermentation was possible at all temperatures. The digestion efficiency was governed by the organic loading rate as well as the hydraulic 10ading rate. No reduction of the digestion efficiency at $40-45^{\circ}C$, which had been referred to a critical temperature range, was observed. The digestion efficiency increased monotonically from mesophilic to thermophilic range. Improved settling properties of digested sludge was also recorded at higher temperatures.

  • PDF

Effect of Sludge Conditioner on Dewaterability of Sludge Produced from the Anaerobic Digestion of Food Waste (음식물 쓰레기의 혐기성 소화 슬러지의 응집 및 탈수 특성에 미치는 영향)

  • Park, Jong-Bu;Choi, Sung-Su;Park, Seung-Kook;Hur, Hyung-Woo;Han, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.104-110
    • /
    • 2001
  • In this study, the effect of physico-chemical variables on sludge conditioning was determined to enhance dewaterability of effluent produced from the thermophilic anaerobic digestion of food waste. The gas production rate and methane content during the anaerobic digestion of food waste were $1.1m^3/kg$ VS and 63%, respectively, and the biodegradability of volatile solids was 87.5%. The concentrations of CODcr, TKN and TP of effluent from digestor were 18,500mg/L, 2,800mg/L, and 582mg/L, respectively. At the jar test to screen the flocculant for the dewatering of effluent from digestor, $FeCl_3$ and strong cationic polymer were effective on making flocs in the effluent. The condition of flocculation of effluent were 500mg/L of $FeCl_3$ and 50-100 mg/L of strong cationic polymer, respectively. As the result of measuring of dewaterability potential of effluent to determine the mixing ratio between $FeCl_3$ and polymer by capillary suction time(SCT), optimum condition was 500mg/L of $FeCl_3$ and 80mg/L of strong cationic polymer.

  • PDF

Degradation characteristics in anaerobic co-digestion of sewage sludge and food waste (하수슬러지와 음식물쓰레기의 혼합소화시 혼합비율과 기질농도에 따른 분해특성)

  • Shin, Hang-Sik;Kim, Hyun-Woo;Han, Sun-Kee;Kang, Seok-Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.96-101
    • /
    • 2002
  • This research was conducted to find the optimal condition in codigestion of food waste and sewage sludge with various mixing ratios. The analysis of degradation characteristics were based on the variations of methane production as well as methane production rate (MPR). BMP values were getting higher as the addition of foodwaste increased. But the lag-phase were prolonged when the foodwaste was over 40%, Nonlinear regression was conducted with the cumulative methane production data. Not only thermophilic but mesophilic condition, 40% of foodwaste addition showed maximum MPR. Higher mixing ratio which is over 50% were unprofitable in gaining higher MPR values. The most important factor in thermophilic co-digestion was substrate concentration. But in mesophilic co-digestion, both substrate concentration the mixing ratio had major effects on MPR. The most probable reasons of the synergetic effects in co-digestion of foodwaste and sewage sludge were the balanced nutrient expressed as C/N ratio and increased kinetic constants of hydrolysis by the mixed co-substrates.

  • PDF

Analysis of the Factors Affecting Anaerobic Thermophilic Digestibility of Food Wastes (음식물쓰레기의 고온 혐기성 소화도에 미치는 요소에 대한 분석)

  • Kim, Do Hee;Hyun, Seung Hoon;Kim, Kyung Woong;Cho, Jaeweon;Kim, In S.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.130-139
    • /
    • 2000
  • Serial basic tests were conducted for the determination of fundamental kinetics and for the actual application of kinetic parameter to food waste digestion with precise measurement of methane production under a thermophilic condition. The effects of food particle size, sodium ion concentration, and volatile solid (VS) loading rate on the anaerobic thermophilic food waste digestion process were investigated. Results of serial test for the determination of fundamental kinetic coefficients showed the value of k (maximum substrate utilization rate coefficient) and KS (half-saturation coefficient) as $0.24hr^{-1}$ and $700mg/{\ell}$, respectively, for non-inhibiting organic loading range. No inhibition effect was shown until $5g/{\ell}$ of sodium ion concentration was applied to a serum bottle reactor. However, the volume of methane gas was decreased gradually when the concentrations of more than $5g/{\ell}$ of sodium ion applied. All sizes of food waste particle showed the same constants (A : 0.45) but the maximum substrate utilization rate constant ($k_{HA}$) was inversely proportional to particle size. As an average particle size increased from 1.02 mm to 2.14 mm, $k_{HA}$ decreased from $0.0033hr^{-1}$ to $0.0015hr^{-1}$. The result reveals that particle size is one of the most important factors in anaerobic food waste digestion. There was no inhibition effect of sodium ion when VS loading rate was $30g/{\ell}$. And maximum injection concentration of VS loading rate was determined about $40g/{\ell}$.

  • PDF

Odor emission characteristics in anaerobic high temperature burial composting of swine carcasses (돼지 사체의 혐기적 고온 매몰퇴비화법에서의 악취발생 특성)

  • Yang, Woo-Young;Lee, Jin-Young;Choi, Yeon-Ju;Ryu, Hee-Wook;Chae, Jeong-Seok;Jeon, Jun-Min
    • Journal of odor and indoor environment
    • /
    • v.16 no.2
    • /
    • pp.187-198
    • /
    • 2017
  • It is very important to treat infected livestock carcasses safely and quickly. In this study, the degradation characteristics and odor generation characteristics of carcasses were investigated during the treatment of swine carcasses using the anaerobic burial composting method. While the carcasses were decomposed, the temperature remained high, at $40{\sim}55^{\circ}C$ on average, and most of the carcasses were decomposed rapidly. The major odor-contributing substances in the buried composting method are sulfuric odor substances such as $H_2S$, $CH_3SH$, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), and the odor contribution of these substances is 93~99%. Among them, $CH_3SH$, which accounts for about 56~89% of odor contribution, was the most representative indicator substance. Despite the anaerobic digestion process, the methane concentration in the digestion process was as low as 0.5~0.8% at the burial point of the carcass. The odor and methane produced during the decomposition of the carcasses decreased considerably during the discharge to the surface layer through the buried layer consisting of compost. These results suggest that anaerobic high temperature burial composting is one of the most useful methods to treat carcasses of infected livestock.

Effects of the Redox Potential of the Acidogenic Reactor on the Performance of a Two-Stage Methanogenic Reactor

  • Phae, Chae-Gun;Lee, Wan-Kyu;Kim, Byung-Hong;Koh, Jong-Ho;Kim, Sang-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.30-35
    • /
    • 1996
  • Distillery wastewater was used in a thermophilic laboratory-scale two stage anaerobic digester to test the effects of the redox potential of the first acidogenic reactor on the performance of the system. The digester consisted of first a acidogenic reactor and the an upflow anaerobic sludge blanket (UASB) reactor. The digestor was operated at a hydraulic retention time (HRT) of 48 h. Under these conditions, about 90% of the chemical oxygen demand as measured by the chromate method ($COD_{cr}$) was removed with a gas production yield of 0.4 l/g-COD removed. The redox potential of the acidogenic reactor was increased when the reactor was purged with nitrogen gas or agitation speed was increased. The increase in reduction potential was accompanied by an increase in acetate production and a decrease in butyrate formation. A similar trend was observed when a small amount of air was introduced into the acidogenic reactor. It is believed that the hydrogen partial pressure in the acidogenic reactor was decreased by the above mentioned treatments. The possible failure of anaerobic digestion processes due to over-loading could be avoided by the above mentioned treatments.

  • PDF

Influence of Food Wastewater Loading Rate on the Reactor Performance and Stability in the Thermophilic Aerobic Process (음폐수 부하량에 따른 고온호기성 공정의 처리 양상)

  • Jang, Hyun Min;Choi, Suk Soon;Ha, Jeong Hyub;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • In this study, the feasibility of a single-stage thermophilic aerobic process for the treatment of high-strength food wastewater produced from the recycling process of food wastes was examined to substitute anaerobic digestion process. Also, the removal and stability of thermophilic aerobic process were assessed according to the changes of hydraulic retention times (HRTs) and organic loading rates (OLRs). When the OLR increased from 9.2 to $37.2kgCOD/m^3d$, a pH value in R1 (HRT : 5 d) significantly decreased to 5.0, due to the organic acid accumulation. On the other hand, the pH value in R2 (HRT : 10 d) was stable and R2 showed the high removal of COD, organic acid and lipid, even though the OLR increased from 4.6 to $18.6kgCOD/m^3d$. In R1, the COD loading rates for COD removal was suddenly dropped, as the COD loading rate increased from 18.6 to $28.4kgCOD/m^3d$. In contrast, R2 showed that the COD loading rates for COD removal increased with regard to increment in the loading rates of 3.61, 7.05, 9.43 and $12.2kgCOD/m^3d$, indicative of the high COD removal efficiency. Therefore, the results demonstrated that over 10-d HRT, the high concentration of raw food wastewater was efficiently treated in the single-stage thermophilic aerobic process.