• Title/Summary/Keyword: thermohaline circulation

Search Result 18, Processing Time 0.02 seconds

The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.291-299
    • /
    • 2006
  • The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.

  • PDF

Climate Change and the Thermohaline Circulation of the Oceans (기후 변환와 해양 열염분 순환)

  • Park, Young-Gyu
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.69-74
    • /
    • 2005
  • In this short article, oceanic processes that could have strong effect on the climate have been explained while focusing on the oceanic thermohaline circulation (THC). First, the structure of THC is explained using a simple scaling law. Then, the thermohaline catastrophe, which is believed to be a cause of a rapid climate changes observed in paleoclimate records, and interdecadal variations in THC are explained. The interactions between the oceans and $CO_2$ are also mentioned briefly.

A Conceptual Two-Layer Model of Thermohaline Circulation in a Pie-Shaped $\beta$-Plane Basin

  • Park, Young-Gyu
    • Journal of the korean society of oceanography
    • /
    • v.38 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • The three dimensional structure of thermohaline circulation in a D-plane is investigated using a conceptual two layer model and a scaling argument. In this simple model, the water mass formation region is excluded. The upper layer represents the oceans above the main thermocline. The lower layer represents the deep ocean below the thermocline and is much thicker than the upper layer. In each layer, geostrophy and the linear vorticity balance are assumed. The cross interfacial velocity that compensates for the deep water mass formation balances downward heat diffusion from the top. From the above relations, we can determine the thickness of the upper layer, which is the same as thermocline depth. The results we get is basically the same as that we get for an f-plane ocean or the classical thermocline theory. Mass budget using the velocity scales from the scaling argument shows that western boundary and interior transports are much larger than the net meridional transport. Therefore in the thermohaline circulation, horizontal circulation is much stronger than the vertical circulation occuring on a meridional plane.

Responses of the Ross Sea to the Climate Change: Importance of observations in the Ross Sea, Antarctica (기후변화에 따른 남극 로스해 반응에 관한 고찰: 남극 로스해 관측의 중요성)

  • Yoon, Seung-Tae
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.69-82
    • /
    • 2022
  • The Ross Sea, Antarctica plays an important role in the formation of Antarctic Bottom Water (AABW) which is the densest water mass in global thermohaline circulation. Of the AABW, 25% is formed in the Ross Sea, and sea ice formation at the polynya (ice-free area) developed in front of ice shelves of the Ross Sea is considered as a pivotal mechanism for AABW production. For this reason, monitoring the Ross Sea variations is very important to understand changes of global thermohaline circulation influenced by climate change. In addition, the Ross Sea is also regarded as a natural laboratory in investigating ice-ocean interactions owing to the development of the polynya. In this article, I introduce characteristics of the Ross Sea described in previous observational studies, and investigate variations that have occurred in the Ross Sea in the past and those taking place in the present. Furthermore, based on these observational results, I outline variations or changes that can be anticipated in the Ross Sea in the future, and make an appeal to researchers regarding the importance and necessity of continuous observations in the Ross Sea.

POM/MICOM Inter-Comparison in Modeling the East Sea Circulation

  • Kim, Kuk-Jin;Seung, Young-Ho;Suk, Moon-Sik
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.161-172
    • /
    • 2001
  • A model-to-model comparison is attempted between Princeton Ocean Model (POM) and Miami Isopycnic Coordinate Ocean Model (MICOM) as a first step to extend our knowledge of models' performances in studying the East Sea circulation. The two models have fundamentally different numerical schemes and boundary conditions imposed on these models are not exactly the same each other. This study indicates that MICOM has a critical weak point in that it does not reproduce the shallow surface currents properly while it handles the thermohaline processes and associated movements of intermediate and deep waters efficiently. It is suggested that the mixed layer scheme needs to be modified so that it can match with inflow boundary conditions in order to reproduce the surface currents properly in MICOM. POM reproduces the surface current pattern better than MICOM, although the surface currents in POM appear to undergo the unrealistic seasonal variation and have exaggeratedly large vertical scale. These defects seem to arise during the process of adapting POM to the East Sea, and removing these defects is left as a future task.

  • PDF

Distribution of Water Masses and Characteristics of Temperature Inversion in the Western Seas of Jeju Island in Spring (봄철 제주도 서부해역의 수괴 분포와 수온역전 특징)

  • Kang, So-Young;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.44 no.3
    • /
    • pp.191-207
    • /
    • 2022
  • Using the results of CTD casts made in Spring from 2017 to 2021, in this study we investigated the water mass distribution and occurrence of temperature inversion in the western seas of Jeju Island in spring. The distribution of water masses was characterized by cold and fresh water in the northwest and warm and saline water in the southeast, forming a strong thermohaline front running in the southwest-to-northeast direction. Strong temperature inversion mainly occurred in the frontal boundary when the cold water intrudes beneath the warm water at depths of 30-50 m. Analysis of the mixing ratio demonstrated that Jeju Warm Water is dominantly distributed in the western seas of Jeju Island, but its ratio can be modified depending on the southward extension of Yellow Sea Cold Water (YSCW). Results of in situ measurement showed that in 2020, the YSCW largely expanded to the western seas of Jeju Island, occupying approximately 40 % of the mixing ratio. Due to the expansion of YSCW, a strong thermohaline front was formed in the study area, thereby causing thick and strong temperature inversion. On the other hand, in 2018 the mixing ratio of YSCW was minimum (~18%) during the study period of 2017-2021, and thus a relatively weak frontal boundary was formed, without the occurrence of temperature inversion. The observational results also suggest that the interannual changes of water mass distribution and the associated temperature inversion in the western seas of Jeju Island are closely related with wind-driven Yellow Sea circulation in spring, which is the summer monsoon transition period.

Impact of Climate Change on the Ocean Environment in the Viewpoint of Paleoclimatology (기후변화가 해양에 미친 영향: 고기후학의 관점에서)

  • Yi, Hi-Il;Shin, Im Chul
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.379-386
    • /
    • 2010
  • Impact of global warming on the ocean environment is reviewed based on most recently published publications. The most significant impact of global warming on marine environment is due to the melting of mountain and continental glaciers. Ice melting causes slow down and/or shut down of thermohaline circulation, and makes hypoxic environment for the first time, then makes anoxic with time. This can cause decreasing biodiversity, and finally makes global extinction of animals and plants. Furthermore, global warming causes sea-level rise, soil erosion and changes in calcium carbonate compensation depth (CCD). These changes also can make marine ecosystem unstable. If we emit carbon dioxide at a current rate, the global mean temperature will rise at least $6^{\circ}C$ at the end of this century, as predicted by IPCC (Intergovernmental Panel on Climate Change). In this case, the ocean waters become acidic and anoxic, and the thermohaline circulation will be halted, and marine ecosystems collapsed.

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.