• 제목/요약/키워드: thermogravimetric

검색결과 979건 처리시간 0.032초

메틸메타크릴레이트의 환경친화적인 광중합 및 열분해특성 (A Characteristics of Environmental Fraternitive Photopolymerization and Thermal Degradation on Methyl Methacrylate)

  • 주영배;이내우;최재욱;강돈오;설수덕
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.68-75
    • /
    • 2001
  • Photopolymerization, the utilization of electromagnetic radiation(or light) as the energy source for polymerization of functional monomers, oligomers is the basis of important commercial processes with broad applicability, including photoimaging and RV curing of coatings and inks. The objective of this study is to investigate the characteristics of environmental fraternitive photopolymerization of methyl methacrylate(MMA). This work is the first step to continue further research about alkyl methacrylate. The experiment was done in aqueous solution under the influence of photo-initiator concentration(0.05-0.25mol/l), light intensity (5000-9000 ${\mu}J/cm^2$) and monomer concentration(2-6mol/l). Methyl methacrylate was polymerized to high conversion ratio using hydrogen peroxide($H_2O_2$) and the kinetics model we have obtained is as follows. $R_p=k_p[S]^{0.41}[M]^{0.62}[L]^{2.45} exp(53.64/RT$). The differential method of thermogravimetric analysis(Friedman method) was used to obtain value of activation energy on decomposition reaction. The average value of it res 45.4Kca1/mol.

  • PDF

Preparation of melamine-grafted graphene oxide and evaluation of its efficacy as a flame retardant additive for polypropylene

  • Monji, Parisa;Jahanmardi, Reza;Mehranpour, Milad
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.81-89
    • /
    • 2018
  • The present study aimed to prepare a novel efficient flame retardant additive for polypropylene. The new flame retardant was prepared by chemical grafting of melamine to graphene oxide with the aid of thionyl chloride. Fourier-transform infrared spectroscopy and thermogravimetric analysis proved that melamine had been successfully grafted to the graphene oxide. The modified graphene oxide was incorporated into polypropylene via solution mixing followed by anti-solvent precipitatio. Homogeneous distribution as well as exfoliation of the nanoplatelets in the polymer matrix was observed using transmission electron microscopy. Thermogravimetric analysis showed a significant improvement in the thermo-oxidative stability of the polymer after incorporating 2 wt% of the modified graphene oxide. The modified graphene oxide also enhanced the limiting oxygen index of the polymer. However, the amount of improvement was not enough for the polymer to be ranked as a self-extinguishing material. Cone calorimetry showed that incorporating 2 wt% of the modified graphene oxide lowered total heat release and the average production rate of carbon monoxide during burning of the polymer by as much as 40 and 35%, respectively. Hence, it was concluded that the new flame retardant can retard burning of the polymer efficiently and profoundly reduce suffocation risk of exposure to burning polymer byproducts.

$^{60}Co\;{\gamma}$-선 조사에 따른 클로프렌 고무의 열적 특성 (Thermal Properties of Chloroprene Rubber with $^{60}Co\;{\gamma}$-ray Irradiation)

  • 김기엽;이청;류부형
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.64-70
    • /
    • 2003
  • The thermal properties of chloroprene rubber (CR) with $^{60}Co\;{\gamma}$-ray irradiation has been investigated. The prepared CR was irradiated up to 1000kGy radiation dose by $^{60}Co\;{\gamma}$-ray and the radiation degradation of CR was investigated by thermogravimetric analysis and differential acanning calorimetry. Dynamic mechanical properties measurement and FT-IR observation are carried out as well. From these analyses results, the glass transition temperature($T_g$), decomposition onset temperature(DOT), oxidative induction time(OIT), the peak temperature of loss modulus and mechanical tan ${\delta}$ values were compared for the radiation degradation level of CR. The tendency between $T_g$ and peak temperature of loss modulus and mechanical tan ${\delta}$ agreed well with radiation doses. Decomposition temperature, OIT and DOT showed the same tendencies as increasing radiation doses. It was verified that these analyses are available to estimate the degradation level of CR.

Thermal Decomposition Behavior and Durability Evaluation of Thermotropic Liquid Crystalline Polymers

  • Shin, Sang-Mi;Kim, Seong-Hun;Song, Jun-Kwang
    • Macromolecular Research
    • /
    • 제17권3호
    • /
    • pp.149-155
    • /
    • 2009
  • The thermal decomposition behavior and degradation characteristics off our different thermotropic liquid crystalline polymers (TLCPs) were studied. The thermal decomposition behavior was determined by means of thermogravimetric analysis (TGA) at different heating rates in nitrogen and air. The order of the thermal stability was as follows: multi-aromatic polyester > hydroxybenzoic acid (HBA)/hydroxynaphthoic acid (HNA) copolyester > HNA/hydroxyl acetaniline (HAA)/terephthalic acid (TA) copolyester > HBA/Poly(ethylene terephthalate) (PET) copolyester. The activation energies of the thermal degradation were calculated by four multiple heating rate methods: Flynn-Wall, Friedman, Kissinger, and Kim-Park. The Flynn-Wall and Kim-Park methods were the most suitable methods to calculate the activation energy. Samples were exposed to an accelerated degradation test (ADT), under fixed conditions of heat ($63{\pm}3^{\circ}C$), humidity ($30{\pm}4%$) and Xenon arc radiation ($1.10\;W/m^2$), and the changes in surface morphology and color difference with time were determined. The TLCPs decomposed, discolored and cracked upon exposure to ultraviolet radiation.

Bio-oil production using residual sewage sludge after lipid and carbohydrate extraction

  • Supaporn, Pansuwan;Ly, Hoang Vu;Kim, Seung-Soo;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.202-210
    • /
    • 2019
  • In order to maximize the utilization of sewage sludge, a waste from wastewater treatment facility, the residual sewage sludge generated after lipid and carbohydrate extraction for biodiesel and bioethanol production was used to produce bio-oil by pyrolysis. Thermogravimetric analysis showed that sludge pyrolysis mainly occurred between 200 and $550^{\circ}C$ (with peaks formed around 337.0 and $379.3^{\circ}C$) with the decomposition of the main components (carbohydrate, lipid, and protein). Bio-oil was produced using a micro-tubing reactor, and its yield (wt%, g-bio-oil/g-residual sewage sludge) increased with an increase in the reaction temperature and time. The maximum bio-oil yield of 33.3% was obtained after pyrolysis at $390^{\circ}C$ for 5 min, where the largest amount of energy was introduced into the reactor to break the bonds of organic compounds in the sludge. The main components of bio-oil were found to be trans-2-pentenoic acid and 2-methyl-2-pentenoic acid with the highest selectivity of 28.4% and 12.3%, respectively. The kinetic rate constants indicated that the predominant reaction pathway was sewage sludge to bio-oil ($0.1054min^{-1}$), and subsequently to gas ($0.0541min^{-1}$), rather than the direct conversion of sewage sludge to gas ($0.0318min^{-1}$).

TGA를 이용한 Chlorinated Poly Vinyl Chloride(CPVC)의 활성화 에너지 평가 (Evaluation of the Activation Energy of Chlorinated Poly Vinyl Chloride (CPVC) Using Thermogravimetric Analysis)

  • 박형주
    • 한국화재소방학회논문지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2019
  • 열중량 분석법(TGA)을 이용하여 소방용 합성수지 배관으로 사용되는 CPVC의 활성화 에너지를 측정하였다. 열중량 분석법을 이용한 활성화 에너지는 Kissinger method와 Flynn-Wall-Ozawa method를 이용하여 계산하였다. 활성화 에너지를 계산한 결과 Kissinger method에 의해 128.07 kJ/mol, Flynn-Wall-Ozawa method에 의해 145.60 kJ/mol로 나타났다. Kissinger method와 Flynn-Wall-Ozawa method에 의해 계산된 활성화 에너지의 차이는 해석 방법이 다르다는 점을 감안했을 때 큰 차이가 없다고 판단된다. 향후 가속열화을 이용한 열적 열화평가 및 공기오븐노화시험을 통한 CPVC의 연소특성을 시험하고, 수명을 예측하고자 한다.

Comparison Study of Thermal Decomposition Characteristics of Wattle & Pine Tannin-based Adhesives

  • Kim, Sumin;Lee, Young-kyu;Kim, Hyun-Joong;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.34-41
    • /
    • 2002
  • This study investigated the thermogravimetric analysis of two types of cured tannin-based adhesives from wattle and pine, with three hardeners of paraformaldehyde, hexamethylenetetramine and TN (tris(hydroxyl)nitromethan), at a temperature of 170℃ and a heating rate of 5, 10, 20 and 40℃/min for 10 minutes. The 5 minutes cured wattle tannin-based adhesive with each hardener at 170℃ was also tested to compare the degree of curing. It was found that thermogravimetric analysis could be used to measure the degree of curing of a thermosetting adhesive. The TG-DTG curves of all the adhesive systems were similar and showed three steps in a similar way to a phenolic resin. This means that each adhesive system is well cross-linked. However, a high thermal decomposition rate was shown at 150 to 400℃ in the case of the pine tannin sample with TN (tris(hydroxyl)nitromethan). The Flynn & Wall expression was used to evaluate the activation energy for thermal decomposition. As the level of conversion (𝛼) increased, the activation energy of each system increased. The activation energy of the wattle tannin-based adhesive with paraformaldehyde was higher than the others.

Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications

  • Eid, Mohanad S.;Bondouk, I.I.;Saleh, Hosam M.;Omar, Khaled M.;Sayyed, M.I.;El-Khatib, Ahmed M.;Elsafi, Mohamed
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1456-1463
    • /
    • 2022
  • The aim of this work is to study the radiation shielding properties of cement samples with waste glass incortated into its composition. The mass attenuation coefficient (MAC) of the samples were experimentally determined to evaluate their radiation shielding ability. The experimental coefficient was evaluated using NaI detector for gamma energies between 59.53 keV and 1408.01 keV using different radioactive point sources Am-241, Eu-152, Co-60, and Cs-137, and the gamma transmission parameters half-value layer, mean free path, and transmission factor were calculated. The theoretical coefficient of the composites was determined using Geant4 and XCOM software. The results were also compared against Geant4 and XCOM simulations by calculating the relative deviation between the values to determine the accuracy of the results. In addition the mechanical properties (including Compressive and porosity) as well as the thermogravimetric analysis were tested for the present samples. Overall, it was concluded that the cement sample with 50% waste glass has the greatest shielding potential for radiation shielding applications and is a useful way to reuse waste glass.

비등온 열중량분석법을 이용한 급속 반탄화 참나무 목분의 열적 특성과 활성화 에너지 연구 (A Study on The Thermal Properties and Activation Energy of Rapidly Torrefied Oak Wood Powder using Non-isothermal Thermogravimetric Analysis)

  • 이단비;김범준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권1호
    • /
    • pp.96-105
    • /
    • 2016
  • 급속 반탄화 처리한 참나무 목분의 연료 적합성을 알아보기 위해 다양한 반탄화 시간(0, 5, 7.5, 10분)으로 제조한 반탄화 목분 시료를 10, 20, $40^{\circ}C/min$의 승온속도로 비등온 열중량분석법을 이용하여 시료의 열적 특성과 활성화 에너지를 알아보았다. 반탄화 처리시간이 증가함에 따라 시료의 열분해 시작온도($T_{onset}$)가 증가하였고, 시료 내 헤미셀룰로오스 함량은 감소하고 리그닌 함량은 증가하였으며, 열분해 반응 후의 최종 잔류물 양이 증가하는 모습을 보여주었다. 활성화 에너지는 Friedman과 Kissinger의 2가지 방법을 사용하여 추정하였으며, 각각의 결정계수 결과값은 0.9를 상회하여 계산된 활성화 에너지 값의 높은 유용성을 확인하였다. 시료의 활성화 에너지 계산 값은 반탄화 처리시간이 증가할수록 감소하는 경향이 나타났으며, 7.5분간 반탄화 처리한 시료에서 관찰된 가장 낮은 활성화 에너지 값은 급속 반탄화처리 참나무 목분의 바이오 고형연료제품으로써의 높은 적용가능성을 보여주었다.

국내 석회석들의 소성 탈황 동시반응 특성 (Desulfurization Characteristics of Domestic Limestones through Simultaneous Calcination and Desulfurization Reaction)

  • 신지훈;김예라;국진우;곽인섭;박경일;이종민;이시훈
    • 공업화학
    • /
    • 제26권5호
    • /
    • pp.557-562
    • /
    • 2015
  • 순환유동층 보일러에서 보일러 내의 탈황을 위해 사용되는 국내 석회석 5종의 탈황반응성을 비교 및 분석하기 위해서 TGA (Thermogravimetric analyzer)를 이용하여 실험하였다. 실험에 사용한 석회석 시료들의 $CaCO_3$ 함량은 91-96 wt%이었으며 실험 조건은 상용 순환유동층 보일러의 운전 조건과 유사한 $850^{\circ}C$의 온도와 2,750 ppm의 $SO_2$로 하였다. 실제 순환유동층 반응기 내에서 진행되는 보일러 내의 탈황을 모사하기 위하여 탈황제인 석회석의 소성과 탈황 반응을 순차적으로 진행하는 일반적인 탈황 반응과 달리 소성과 탈황 반응을 동시에 진행하였다. 또한 37.5, 90.5, 159, 356, $750{\mu}m$의 평균 입도를 가지도록 석회석을 분류하여 석회석의 입도에 따른 탈황 반응성의 변화를 고찰하였다. 석회석의 소성 탈황 동시 반응에서 측정된 탈황 결과는 기존의 석회석 탈황 결과보다 5-20% 정도 낮아 석회석의 로내 탈황에 더 많은 석회석이 필요함을 보여주었다.