• Title/Summary/Keyword: thermogravimetric

Search Result 979, Processing Time 0.026 seconds

Sulfation Reaction Kinetics of Pulverized Korean Dolomite and Limestone using Thermogravimetric Analyses (열중량분석을 이용한 국내산 미분 백운석과 석회석의 황화 반응 특성 연구)

  • 박영철
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.216-222
    • /
    • 1998
  • Thermogravimetric analyses were conducted by isothermal technique in order to characterize the sulfation reaction of calcined sorbents such as Tanyang dolomite, Yongwol dolomite, Tanyang limestone, and Yongwol limestone. Sulfation reaction for 0.08 mm in particle diameter were carried out with respect to various factors.; isothermal reaction temperatures (650~85$0^{\circ}C$), SO$_2$ concentration (0.38~1%), and oxygen concentration (1.2~6.7%). Measured reaction orders of SO$_2$ concentration, oxygen concentration, and activation energy were 0.3~2.2, 0.22~0.51 and 23.6~36 kJ/mol, respectively. The kinetic equations of sulfation reaction of calcined dolomites were correlated with various factors.

  • PDF

Determination of Thermal Decomposition Parameters for Ablative Composite Materials (삭마용 내열 복합재료의 열분해 반응인자 결정)

  • Kim Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.22-25
    • /
    • 2005
  • The thermal degradation of carbon/phenolic composite have been studied at high temperature by using thermogravimetric (TGA). A heating .ate of 5, 10, 15, 30 and $50^{\circ}C/min$ was used for the determination of thermal decomposition parameters of composite materials at high-temperature service. It has been shown that as the heating rates is increased, the peak decomposition rates are occur at higher temperature. Based on results of thermogravimetric analysis, the pyrolysis process is analyzed and physical and mathematical models for the process are proposed. The thermal analysis also has been conducted using transient heat conduction and the in-depth temperature distribution and the density profile were evaluated along the solid rocket nozzle. As a future effort the thermal decomposition parameter determined in this investigation will be used as input to thermal and mechanical analysis when subjected to solid rocket propulsion environment.

  • PDF

Thermal Behavior of Hwangto and Wood Flour Reinforced High Density Polyethylene (HDPE) Composites

  • Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.59-66
    • /
    • 2006
  • The thermal properties of wood flour, Hwangto, and maleated polyethylene (MAPE) reinforced HDPE composites were investigated in this study. The thermal behavior of reinforced wood polymer composites was characterized by means of thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. Hwangto and MAPE were used as an inorganic filler and a coupling agent, respectively. According to TGA analysis, the increase of wood flour level increased the thermal degradation of composites in the early stage, but decreased in the late stage. On the other hand, Hwangto reinforced composites showed the higher thermal stability than virgin HDPE, from the determination of differential peak temperature ($DT_p$). Decomposition temperature of wood flour and/or Hwangto reinforced composites increased with increase of heating rate. From DSC analysis, melting temperature of reinforced composites little bit increased with the addition of wood flour or Hwangto. As the loading of wood flour or Hwangto to HDPE increased, overall enthalpy decreased. It showed that wood flour and Hwangto absorbed more heat energy for melting the reinforced composites. Hwangto reinforced composites required more heat energy than wood flour reinforced composites and virgin HDPE. Coupling agent gave no significant effect on the thermal properties of composites. Thermal analyses indicate that composites with Hwangto are more thermally stable than those without Hwangto.

Reaction Characteristics of Coal and Oxygen Carrier Particle in a Thermogravimetric Analyzer (열중량분석기에서 석탄과 산소공여입자의 반응 특성)

  • Ryu, Ho-Jung;Kim, Young-Joo;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.213-222
    • /
    • 2011
  • To check adaptability of low ash coal(hyper coal) to chemical looping combustion, reaction characteristics of two coals (Roto and Hyper coal) with two oxygen carriers (NiO/bentonite, OCN703-1100) have been investigated in a thermogravimetric analyzer. Hyper coal represented low combustion rate and high ignition temperature, high volatile content and high devolatilization rate, and therefore, showed worse oxygen transfer during successive 10 cycle reduction-oxidation test than Roto coal. Finally we selected Roto coal as the candidate coal for chemical looping combustion. For Roto coal, OCN703-1100 particle showed better oxygen transfer than NiO/bentonite particle. During 10 cycle reduction oxidation test, change of the extent of oxidation (Wo) was negligible and we could conclude that both oxygen carriers have sufficient regeneration ability.

Influence of Sample Preparation on Thermogravimetric Analysis of Poly(Ethylene-co-Vinyl Acetate)

  • Lee, Sang-jin;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.206-211
    • /
    • 2016
  • Experimental error sources for thermogravimetric analysis (TGA) of poly(ethylene-co-vinyl acetate) (EVA) were investigated and sample preparation method to reduce the experimental error was suggested. Maximum dissociation temperatures of EVA for the first and second dissociation reactions ($T_{m1}$ and $T_{m2}$, respectively) were measured. By decreasing the weight of raw EVA, the $T_{m1}$ increased but the the $T_{m2}$ decreased. When weight of the raw EVA was over 10 mg, the TGA curve showed abnormal behaviors. The abnormal TG behaviors were explained by gathering and instantaneous evaporation of acetic acid formed by deacetylation of the VA unit. When TGA analysis of EVA was performed using untreated (raw) EVA, the experimental errors were about 1%. In order to eliminate the abnormal TG behaviors and to reduce the experimental errors, EVA film made by solvent casting was used. For the treated EVA (EVA film), the abnormal TG behaviors did not appear, the $T_{m1}$ decreased by about $2^{\circ}C$ but the $T_{m2}$ increased by about $6^{\circ}C$, and the experimental errors were reduced by 0.5%.

Mechanical and Thermal Properties of Polypropylene/Wax/MAPP Composites Reinforced with High Loading of Wood Flour

  • Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Mohan, D. Jagan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.416-426
    • /
    • 2007
  • Polypropylene (PP) composites with wood flour/wax/coupling agent were manufactured by melt compounding and injection molding. The influence of wood flour(WF), wax, and coupling agent on the mechanical and thermal properties of the composites was investigated. The addition of wood flour to neat PP has the higher tensile modulus and strength compared with neat PP. The presence of wax also improved the tensile modulus. At the same loading of PP and WF, the addition of coupling agent highly decreased the tensile modulus, and increased the tensile strength. From thermogravimetric analysis (TGA), the addition of wax improved the thermal stability of the composites in the later stages of degradation. The presence of MAPP and wood flour in turn decreased thermal stabilities of composites. From differential scanning calorimetry analysis (DSC), neither the loading of wax. nor the presence of MAPP has shown significant effect on the thermal transition of composites.

Synthesis on the Core-Shell Polymer of Silicone Dioxide/Styrene Using Sodium Dioctyl Sulfosuccinate (EU-DO133L) as a Surfactant (계면활성제 Sodium Dioctyl Sulfosuccinate (EU-DO133L)을 사용한 이산화규소/스티렌의 코어-셀 고분자의 합성)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.183-187
    • /
    • 2010
  • Core-Shell polymers of silicone dioxide-styrene system were prepared by sequential emulsion polymerization. In inorganic/organic Core-Shell composite particle polymerization, silicone dioxide adsorbed by surfactant sodium dioctyl sulfosuccinate (EU-DO133L) was prepared initially and then core silicone dioxide was encapsulated emulsion by sequential emulsion polymerization using styrene at the addition of potassium persulfate (KPS) as an initiator. We found that $SiO_2$ core shell of $SiO_2$/styrene structure was formed when polymerization of styrene was conducted on the surface of $SiO_2$ particles, and the concentration sodium dioctyl sulfosuccinate (EU-DO133L) was 0.5~2.0g. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by scanning electron microscope(SEM).

Characteristics of Pore Development for Activated Carbon Fiber from Polyacrylonitrile(II) -Activation- (PAN계 활성탄소 섬유의 세공발달 특성(II) -활성화-)

  • Park, Jong-Hak;Cho, Byung-Rin
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.113-124
    • /
    • 1993
  • Thermogravimetric analysis of copolymer of acrylonitrile(95%) and methyl acrylate(5%) have been carried out to investigate the activation under $H_2O$(30%) -$N_2$atmosphere at various heating rates. The kinetic equation [$f=1-\exp(-a{\Delta}T)^b$] which was derived on the basis of the nonisothermal activation process of carbon fiber in the $H_2O$(30%)-$N_2$system showed good agreement with experimetal results. The pore volume upon conversion was in good agreement with the model of theoretical pore volume. The pore structures of the activated carbon fiber were influenced by the heating rate, activation temperature and internal-external conversions.

  • PDF

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate

  • Lee, Sang-Mook;Jin, Byung-Suk;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.491-498
    • /
    • 2006
  • The thermal degradation of poly(hexamethylene guanidine) phosphate (PHMG) was studied by dynamic thermogravimetric analysis (TGA) and pyrolysis-GC/MS (p-GC). Thermal degradation of PHMG occurs in three different processes, such as dephosphorylation, sublimation/vaporization of amine compounds and decomposition/ recombination of hydrocarbon residues. The kinetic parameters of each stage were calculated from the Kissinger, Friedman and Flynn-Wall-Ozawa methods. The Chang method was also used for comparison study. To investigate the degradation mechanisms of the three different stages, the Coats-Redfern and the Phadnis-Deshpande methods were employed. The probable degradation mechanism for the first stage was a nucleation and growth mechanism, $A_n$ type. However, a power law and a diffusion mechanism, $D_n$ type, were operated for the second degradation stage, whereas a nucleation and growth mechanism, $A_n$ type, were operated again for the third degradation stage of PHMG. The theoretical weight loss against temperature curves, calculated by the estimated kinetic parameters, well fit the experimental data, thereby confirming the validity of the analysis method used in this work. The life-time predicted from the kinetic equation is a valuable guide for the thermal processing of PHMG.

Thermal Characteristics of Polyvinylchloride in Combustion Reaction Using TGA (TGA를 이용한 폴리염화비닐의 연소반응에서의 열적 특성 연구)

  • Seo, Su-Eun;Kang, Yun-Jin;Min, Cho-Young;Bae, Dong-Chul;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • The combustion reaction of polyvinylchloride(PVC) was investigated using a thermogravimetric technique under an air atmosphere condition at several heating rates from 10 to $50^{\circ}C$/min. To obtain information on the kinetic parameters, the dynamic thermogravimetric analysis curve and its derivative were analyzed by a variety of analytical methods such as Kissinger, Friedman, Chatterjee-Conrad, Ozawa and Coats-Redfern methods. The combustion reaction of PVC proceeded in two steps; the first step was caused by the dehydrochlorination process in PVC, and the second step by the combustion of polyene. The comparative works for the kinetic results obtained from various methods should be performed to determine the kinetic parameters, because there are tremendous differences in the calculated kinetic parameters depending upon the mathematical method taken in the analysis.