• Title/Summary/Keyword: thermogravimetric

Search Result 979, Processing Time 0.031 seconds

Thermogravimetric Analysis of Wood and RDF for application to Gasification (가스화로의 확장을 위한 나무와 RDF의 열중량 분석)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.156-159
    • /
    • 2006
  • Gasification and melting method is one of the most potential means for waste treatment process with low emission of fly ash or heavy metal, dioxin and high possibility of using slags as resources. Moisture contents influences directly a gasification characteristics of waste. So it is necessary to investigate the effect of moisture contents in gasification. But it is hard to consider the effect of moisture contents, using samples of powder form of Milligram's order in existing thermogravimetric analyser. Therefore, we made a thermogravimetric analysis device to applicate samples of Gram's order. Gasification characteristics are typically reported with result from thermogravimetric analysis date for wood and RDF samples along with changing moisture contents. It is discussed the way to apply these analysis results to gasification and melting furnace.

  • PDF

Studies on the Miscibility of Methylcellulose/Chitosan Blends by Thermogravimetric Analysis and Thermodynamic Mechanical Analysis (열분석기기를 이용한 메틸셀룰로오스/키토산 블랜드의 상용성에 관한 연구)

  • Park, Jun-Seo;Shin, Ki-Ho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.2
    • /
    • pp.18-26
    • /
    • 2002
  • Films of methylcellulose(MC), chitosan and their blends were prepared using water and acid solution as a solvent. The transition behavior and miscibility of polymers and their blends were characterized by dynamic mechanical analysis(DMA) and thermogravimetric analysis(TGA). The DMA analysis of PEG400/MC blends has shown that PEG400 was compatible with MC and was effective plasticizer since the curves of $tan{\delta}$ against temperature exhibited single peak, corresponding to single glass transition temperature, which were displaced to lower values with increasing PEG400 content. Results of DMA analysis and TGA analysis of MC/chitosan blends indicate that there are some miscibility between MC and chitosan in the blends, attributed to the similarities between two polysaccharides and interactions of two polymers in the blends. The inclusion of PEG400 in the blends increase the miscibility between two components in the blends.

  • PDF

Non-isothermal pyrolysis of cashew shell cake-bituminous coal blends

  • Park, Yoon Hwa;Park, Ho Young;Kim, Hyun Hee;Park, Sang Bin
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • This paper describes the non-isothermal pyrolysis of cashew shell cake (CSC) - bituminous coal blends. The blends exhibit two distinct stages in the thermogravimetric curves, which the first stage stems from CSC and the second one from the superposition of CSC and coal pyrolysis. The pyrolysis behavior of the blend was linearly proportional to the blending ratios. The overall behavior of the blends was evaluated in terms of the maximum rate of weight loss, characteristic temperatures, char yields, and the calculated and experimental thermogravimetric curves. The activation energies ranged up to 49 kJ/mol for the blends were obtained and used to evaluate the interaction in the blends. The present thermogravimetric study shows that there is no significant interaction between CSC and coal in the blends, and it was supported by the characteristic values which are linearly proportional to the weight percentages of cashew cake-shell in the blends. The no-interaction might be due to the fact that the main reaction zones are distinctively different for two constituents, so the additive rule is acceptable for describing pyrolysis behavior of the present blends.

The interaction of woody biomass with bituminous coal in their blends

  • Park, Ho Young;Park, Yoon Hwa;Kim, Young Joo;Kim, Hyun Hee;Park, Sang Bin
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.320-328
    • /
    • 2017
  • This paper describes the non-isothermal pyrolysis of wood pellet and saw dust, and their blends with bituminous coal. The blends showed the distinct, two peaks in thermogravimetric curves, and the first peak came from the biomass pyrolysis and the second one came from the coal pyrolysis. The interaction in the blend was evaluated in terms of the maximum rate of weight loss, characteristic temperatures, char yields, and the calculated and experimental thermogravimetric curves. The activation energies and frequency factors for the blends were obtained with the multi-stage, Coats and Redfern method. The respective activation energies of 73 and 67 kJ/mol and the frequency factors of 725,100 and $65,262min^{-1}$ were obtained for the present wood pellet and saw dust samples. The thermogravimetric study shows that there is no significant interaction between the present biomass and coal in the blends, and the pyrolysis behavior can be described with the additive rule.

Study on Inhomogeneity in Compositions of Asphalt Pavement Wear Particles Using Thermogravimetric Analysis

  • Uiyeong Jung;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • Asphalt pavements are generally composed of fine and coarse aggregates, bitumen, and modifier. Asphalt pavement wear particles (APWPs) are produced by friction between the road surface and the tire tread, and they flow into the environment such as rivers and oceans. Model APWPs were prepared and a single APWP of 212-500 (S-APWP) and 500-1000 ㎛ (L-APWP) was analyzed using thermogravimetric analysis (TGA) to investigate inhomogeneity in the compositions of the APWPs. The reference TGA thermogram was built using thermograms of the raw materials and formulation of the model asphalt pavement. The compositions of the APWPs were different from each other. Ash contents of the APWPs were lower than expected. Inhomogeneity in the total contents of bitumen and modifier was more severe than that in the other components. The inhomogeneity of the S-APWPs was more severe than that of the L-APWPs.

Thermal and Rheological Studies of Ricinodendron Heudelotii Wood for Its Pulp Production Potential

  • Ogunleye, Bolade Mercy;Fabiyi, James Sunday;Fuwape, Joseph A.
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.323-328
    • /
    • 2016
  • Thermal stability and rheological behaviors of Ricinodendron heudelotii wood were investigated. Thermogravimetric analysis conducted at a heating rate of $10^{\circ}C/min$ from 20 to $600^{\circ}C$ in a nitrogen atmosphere indicated that there was no variation in the decomposition of the onset and final temperature for all the polymers. The thermal behaviours were investigated at a temperature range from 130 to $0^{\circ}C$ at $3^{\circ}C/min$, multi-frequencies of 0.1-10 Hz using dynamic mechanical analysis. N-methyl-2-pyrolidone saturated specimens were tested while submerged under the same solvent. Polymers decomposition pattern during thermogravimetric analysis are similar in the radial position of the wood. The glass transition temperature (Tg) of R. heudelotii is $45{\pm}1^{\circ}C$ at 0.1 Hz. The Tg differs from the innerwood to outerwood. The Tg showed that N-methyl-2-pyrolidone saturated R. heudelotii would require low energy consumption during chemi-thermomechanical pulping.

Thermogravimetric Analysis of Rice Husk Flour for a New Raw Material of Lignocellulosic Fiber-Thermoplastic Polymer Composites

  • Kim, Hyun-Joong;Eom, Young-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.59-67
    • /
    • 2001
  • Rice husk flours were analyzed by chemical composition and thermogravimetric methods in nitrogen atmosphere to discuss its feasibility as a raw material for manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite. It was revealed in the chemical composition analysis that rice husk flour was composed of moisture, 5.0%; lignin, 21.6%; holocellulose, 60.8%; ash, 12.6%. In the thermogravimetric analysis (TGA), thermal decomposition behavior of rice husk flour from room temperature to $350^{\circ}C$ was similar to that of wood flour, but rice husk flour was more thermally stable from 350 to $800^{\circ}C$ than wood flour because of higher silica content in the rice husk flour and smaller particle size of rice husk flour. The activation energy of thermal decomposition was evaluated using Flynn & Wall expression. As the thermal decomposition proceeded in rice husk flour, the activation energy of thermal decomposition appeared almost constant up to ${\alpha}=0.25$, but thereafter increased. Activation energy of thermal decomposition in wood flour, however, decreased steeply up to ${\alpha}=0.3$, but thereafter remained almost constant. From the results, rice husk flour was thought be a substitute for wood flour in manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite in the aspect of thermal decomposition.

  • PDF

Differential Scanning Calorimetric and Thermogravimetric Analysis of Silk Fibroin / poly (Vinyl pyrrolidone) (견단백질 / Poly (Vinyl pyrrolidone)의 열특성)

  • Kweon, Hae-Yong;Lee, Kwang-Gill;Yeo, Joo-Hong;Woo, Soon-Ok;Han, Sang-Mi
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.2
    • /
    • pp.77-80
    • /
    • 2007
  • Silk fibroin/poly (vinyl pyrrolidone) conjugates were prepared and characterized through differential thermal calorimeter and thermogravimetry. The glass transition temperature (Tg) of poly (vinyl pyrrolidone) was not changed by reaction with silk fibroin. However, abnormal exothermic peak was observed at the silk fibroin/poly (vinyl pyrrolidone) conjugates. Thermogravimetric analysis showed that thermal stability of silk fibroin was relatively increased by reaction with PVP.