• Title/Summary/Keyword: thermoelectric properties

Search Result 368, Processing Time 0.042 seconds

Effect of surfactant on Electrical/thermoelectric properties of electrodeposited Bi2Te3 thin films (전기 도금법에 의해 얻어진 Bi2Te3 박막의 전기 및 열전 특성에 미치는 계면 활성제의 영향)

  • Yu, In-Jun;Song, Yeong-Seop;Lee, Gyu-Hwan;Im, Dong-Chan;Lee, Ju-Yeol;Kim, Yang-Do;Im, Jae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.190-190
    • /
    • 2013
  • 여러 화합물 반도체 중 $Sb_2Te_3$, $Bi_2Te_3$, 그리고 $Bi_2Se_3$과 같은 $A_2B_3$형 화합물은 열전소자에 적용가능성이 좋아서 광범위하게 연구되고 있다. $A_2B_3$형 화합물 중 특히 $Bi_2Te_3$는 단독 또는 다른 원소와 합금하여 태양전지, 열전소자, 그리고 상-변환 소자 등으로 이용된다. $Bi_2Te_3$ 박막을 형성하는 여러 방법 중에 전기화학적인 전착법은 박막의 조성 및 두께 제어가 용이하고 비용적 측면이나 형성속도 측면에서도 타 방법에 비하여 유리하기 때문에 주목을 많이 받고 있다. 하지만 전기화학적인 전착법에 의해 얻어진 박막은 점 결함, 높은 내부에너지와 결정성이 낮다는 단점이 있다. 본 연구에서는 도금층의 결정성 향상을 위하여 계면 활성제인 CTAB를 첨가하여 $Bi_2Te_3$ 박막을 형성하였다. $Bi_2Te_3$ 박막에 미치는 계면 활성제의 영향을 알아보기 위하여 결정성 및 전기, 열전 특성을 분석하였다. 또한, 도금된 박막을 다양한 온도에서 열처리 하여 열처리가 $Bi_2Te_3$ 박막의 전기 및 열전 특성에 미치는 영향을 알아보았다.

  • PDF

Thermoelectric properties of unidirectionally solidified $Bi_{2}Te_{3}-PbBi_{4}Te_{7}$ eutectic alloys (일방향응고된 $Bi_{2}Te_{3}-PbBi_{4}Te_{7}$ 공정합금의 열전특성)

  • Park, Chang-Geun;Min, Byeong-Gyu;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.251-258
    • /
    • 1995
  • In an effort to increase the thermoelectric figure of merit by reducing the thermal conductivity, the unidirectionally solidified n-type (Bi, Pb)-Te based alloys which form a $Bi_{2}Te_{3}-PbBi_{4}Te_{7}$eutectic lamellar structure were investigated with the microstructural control at various solidification conditions. PbBi_{4}Te_{7}$ lamellae were grown on cleavage plane(0001) of $Bi_{2}Te_{3}$ and the interlamellar spacing decreased from 10.4 $\mu \textrm{m}$to 3.2$\mu \textrm{m}$ with growth velocity variation from 1.4 \times 10^{-4}$cm/sec to $8.3 \times 10^{-4}$cm/sec. Seebeck coefficient was constant, $\mid$$\alpha$$\mid$=29 $\mu$ V/K regardless of growth direction, growth velocity and temperature gradient. Electrical conductivity showed a tendency to decrease slightly with growth velocity and it parallel to growth direction was about three times as large as perpendicular direction. The figures of merit were varied differently from Seebeck coefficients and electrical conductivities depending on the growth direction, growth velocity and temperature gradients. They showed the relative increase in case of perpendicular direction compared with parallel to growth direction. It is believed to be due to the reduction of the thermal conductivity according to decrease of the interlamellar spacing.

  • PDF

The Effect of Stacking Fault on Thermoelectric Property for n-type SiC Semiconductor (N형 SiC 반도체의 열전 물성에 미치는 적층 결함의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2021
  • This study examined the effects of stacking faults on the thermoelectric properties for n-type SiC semiconductors. Porous SiC semiconductors with 30~42 % porosity were fabricated by the heat treatment of pressed ��-SiC powder compacts at 1600~2100 ℃ for 20~120 min in an N2 atmosphere. XRD was performed to examine the stacking faults, lattice strain, and precise lattice parameters of the specimens. The porosity and surface area were analyzed, and SEM, TEM, and HRTEM were carried out to examine the microstructure. The electrical conductivity and the Seebeck coefficient were measured at 550~900 ℃ in an Ar atmosphere. The electrical conductivity increased with increasing heat treatment temperature and time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The Seebeck coefficients were negative due to nitrogen behaving as a donor, and their absolute values also increased with increasing heat treatment temperature and time. This might be due to a decrease in stacking fault density, i.e., a decrease in stacking fault density accompanied by grain growth and crystallite growth must have increased the phonon mean free path, enhancing the phonon-drag effect, leading to a larger Seebeck coefficient.

Thermoelectric Properties of the (Pb$_{1-x}$Sn/$_{x}$)Te Sintered by AC Applied Hot Pressing (AC 통전식 Hot Press 법에 의해 제조된 (Pb$_{1-x}$Sn/$_{x}$)Te 열전반도체의 물성)

  • 신병철;황창원;오수기;최승철;백동규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.1-5
    • /
    • 2000
  • Properties of AC applied hot pressed ($Pb_{1-x}Sn_{x}$) Te thermoelectrics were investigated. Mechanical alloying process used to produce alloyed powder to reduce the inhomogeneity and to avoid vaporization of constituents. It showed an increase in the mechanical alloying time with increasing of Sn contents in ($Pb_{1-x}Sn_{x}$)Te. ($Pb_{1-x}Sn_{x}$)Te were sintered at 873 to 923K for 1-4 minutes, under 150 kgf/$\textrm{cm}^2$ by AC applied hot pressng method. The short sintering time of AC applied hot pressing process could reduce the vaporization of Te. The density of ($Pb_{1-x}Sn_{x}$) Te was more dependent on the sintering temperature than the sintering time. The p-n transition was observed at x=0.1 but only p type conduction behavior was observed at more than 20 mol% of Sn compositions. The maximum value of Seebeck coefficient is 250 $\mu$V/K for x=0.2 at 500K. As the amount of Sn increases, the peak value of Seebeck coefficient drops and shifts to higher temperature and the peak value of electrical conductivity decreased with increasing temperature.

  • PDF

Manufacturing of Artificial Lightweight Aggregate using Stone-Dust and Bottom Ash (석분토와 바텀애쉬를 이용한 인공경량골재 제조)

  • Yoon, Seob;Kim, Jung-Bin;Jeong, Yong;Kim, Yang-Bea
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.381-384
    • /
    • 2008
  • The artificial lightweight aggregate was manufactured using stone-dust(SD) and bottom ash(BA) from crushed aggregate manufacture process and thermoelectric power plant respectively. The properties of artificial lightweight aggregate according to mixing ratio of SD and BA was that the density was decreased and the absorption was increased with increasing BA content, because bottom ash was contained many unburned carbon and $Fe_2O_3$ which generates gas by oxidation during a sintering process. The appropriate mixing ratio of SD and BA was estimated at about 5:5. The properties of artificial lightweight aggregate according to addition flux admixture was that it had lower density with increasing of $Na_2SO_4$ content. In this study, we could developed the artificial lightweight aggregate as the bulk density was $1.52g/cm^3$ and water absorption 7.3% under the condition that mixing ratio of SD:BA was 5:5, $Na_2SO_4$, $Fe_2O_3$ 1%, sintering temperature $1,150^{\circ}C$ and sintering time 15mins.

  • PDF

Development and Properties of Carbon monoxide Detector for Ambient Air monitoring (대기오염 측정용 일신화 탄소 검출기의 제작 및 특성)

  • Cho, Kyung-Haeng;Lee, Sang-Wha;Lee, Joung-Hae;Choi, Kyong-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2000
  • A detector for monitoring carbon monoxide (CO) in ambient air by nondispersive infrared (NDIR) spectroscopy has been developed and investigated its sensitivity and stability. The essential parts of the absorption cell are three spherical concave mirrors so as to improve the sensitivity by increasing the light path length in the cell. The radius and center of curvature of mirrors and position in the cell was calculated by computer simulation in order that the light path length may be 16m into the 50cm cell. The number of traversals and optical path properties were confirmed by laser beam alignment in transparent absorption cell. The photoconductive type lead selenide (PbSe) was used as CO sensing material, which was cooled to increase the responsibility by thermoelectric cooling method. The detection limit and span drift of the developed CO detector was 0.24ppm and 0.03ppm(v/v) respectively.

  • PDF

Structure and Superconducting Properties of Ba-substituted (Ru,Cu)(Sr,Eu)$_2$(Eu,Ce)$_2Cu_2O_z$ System (Ba 치환에 따른 (Ru,Cu)(Sr,Eu)$_2$(Eu,Ce)$_2Cu_2O_z$ 계의 초전도 특성)

  • Lee, H.K.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • We investigated the effects of Ba and Cu co-substitution on the structural and superconducting properties of ($Ru_{1-y}Cu_y$)($Sr_{1.67-x}Ba_xEu_{0.33}$)($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$ samples. X-ray diffraction(XRD) reveals that single-phase samples can be obtained in the range from x = 0.1 to 0.2 for ($Ru_{0.5}Cu_{0.5}$)($Sr_{1.67-x}Ba_xEu_{0.33}$)($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$ and from y = 0.25 to 0.5 for ($Ru_{1-y}Cu_y$)($Sr_{1.47}Ba_{0.2}Eu_{0.33}$)($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$, respectively. All samples with compositions of ($Ru_{0.5}Cu_{0.5}$)($Sr_{1.67-x}Ba_xEu_{0.33}$) ($Eu_{1.34}Ce_{0.66}$)$Cu_2O_z$ (x = 0 - 0.33) show superconducting transition behavior and the onset transition temperature decreases slightly with increasing x in consistent with the change of hole concentration estimated from room temperature thermoelectric power measurements. The XRD and resistivity measurements for the ($Ru_{1-y}Cu_y$)($Sr_{1.47}Ba_{0.2}Eu_{0.33}$)($Eu_{1.34}Ce_{0.66}$) $Cu_2O_z$ system indicate that the partial substitution of Cu for Ru is necessary to form phase pure samples, but result in a small change in transition temperature in the single-phase region from x = 0.25 to 0.5.

A Study on the Utilization of Coal Ash as Earthwork Materials (석탄회의 토공재로서의 활용에 관한 연구)

  • 천병식;임해식
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 1996
  • In this study, the possibility of the utilization of coal ash as earthwork materials is investigated. For this purpose, some laboratory experiments were carried out. The samples used in these tests are fly ash(FA), bottom ash(BA), coal ash dropped into ash pond(FA:BA=8:2), and mixed coal ash(FA:BA=5:5), which were discharged as a by-product at Yong-Yeul thermoelectric power plant, and general road filling materials. And for the deformation analysis of coal ash reclamation ground, several hyperbolic model parameters were determined by triaxial compression test. As a result of this study, coal ash has excellent engineering properties such as strength parameters comparing with general soils of the same grain size, especially in case of being used as backfill materials and reclamation materials on soft ground, and coal ash is superior to general earthwork materials in engineering properties becasuse of self hardening behaveiour, light weight property, etc.

  • PDF

Changes in Shear Strength of Bottom ash through the Particle Breakage (입자파쇄에 따른 Bottom ash의 전단강도 변화)

  • Yun, Tae-Kang;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-ho;Kim, Dong-Geun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.99-105
    • /
    • 2015
  • Bottom ash and fly ash are by-product from thermoelectric power plants. Fly ash is recycled to various field. However, though an output of bottom ash have increased each year, most of them is reclaimed in ash landfill. It is necessary to find a solution that bottom ash is recycled economically and know characteristics of bottom ash to recycle. It is goal to investigate engineering properties of bottom ash, especially the particle breakage, to recycle that. Bottom ash was crushed by impact method according to compaction energy and then compared with or original sample and crushed it in terms of particle size distribution and characteristics of strength. In result, after crushed it, particle finer was increased, especially 2~0.85 mm size, than original. It was displayed a tendency that internal friction of crushed sample was decreased but cohesion of it was not. Therefore, it is important to investigate the engineering properties of bottom ash in terms of the particle breakage to use construction materials for various field.

Properties of CoGe thin film-based galvanic cells and their applications for IoT sensor networks (CoGe 박막 기반 galvanic cell의 특성 및 IoT 센서 네트워크에 대한 적용)

  • Jeon, Buil;Han, Dongsoo;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1347-1356
    • /
    • 2022
  • In this paper, we investigate the properties of CoGe thin film-based galvanic cells as a function of their dimension (cell length, width, etc.) and show their application as sensors to Arduino-based IoT sensor networks to detect water contact. Because these CoGe thin film-based galvanic cells do not require mechanical strains or temperature gradients unlike piezoelectric and thermoelectric energy harvesters, we think that these thin film-based galvanic cells are more suitable for self-powered sensor networks demanding sustainable and robust energy harvesters. In the past, a sputter-deposited CoGe thin film has not been intensively investigated for energy harvesting appilcations. Thus, in this study, we perform a feasibility study of galvanic cells composed of a sputter-deposited CoGe thin film to see if they can be applied as potential self-powered sensors. We believe that this paper will be of great help in developing even more enhanced sensor networks.