• Title/Summary/Keyword: thermoelectric energy

Search Result 233, Processing Time 0.027 seconds

Fundamental Study of Energy Harvesting using Thermoelectric Module on Road Facilities (열전소자를 활용한 도로구조물에서의 에너지 하베스팅 기초 연구)

  • Lee, Jae-Jun;Kim, Dae-Hoon;Lee, Kang-Hwi;Lim, Jae-Kyu;Lee, Seung-Tae
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : An conventional method for electric power generation is converting thermal energy into mechanical energy then to electrical energy. Due to environmental issues such as global warming related with $CO_2$ emission etc., were the limiting factor for the energy resources which resulting in extensive research and novel technologies are required to generate electric power. Thermal energy harvesting using thermoelectric generator is one of energy harvesting technologies due to diverse advantages for new green technology. This paper presents a possibility of application of the thermoelectric generator's application in the direct exchange of waste solar energy into electrical power in road space. METHODS : To measure generated electric power of the thermoelectric generator, data logger was adopted as function of experimental factors such as using cooling sink, connection methods etc. Also, the thermoelectric generator、s behavior at low ambient temperature was investigated as measurement of output voltage vs. elapsed times. RESULTS : A few temperature difference between top an bottom of the thermoelectric generator is generated electric voltage. Components of an electrical circuit can be connected in various ways. The two simplest of these are called series and parallel and occur so open. Series shows slightly better performance in this study. An installation of cooling sink in the thermoelectric generator system was enhanced the output of power voltage. CONCLUSIONS : In this paper, a basic concepts of thermoelectric power generation is presented and applications of the thermoelectric generator to waste solar energy in road is estimated for green energy harvesting technology. The possibility of usage of thermoelectric technology for road facilities was found under the ambient thermal gradient between two surfaces of the thermoelectric module. An experiment results provide a testimony of the feasibility of the proposed environmental energy harvesting technology on the road facilities.

Experimental Study on the Optimal Heat Exchanger of Thermoelectric Generation System for Industrial and Automobile Waste Heat Recovery (차량 및 산업설비 폐열회수용 열전발전시스템의 최적 열교환 시스템에 관한 실험적 연구)

  • Chung, Jae-Hoon;Kim, Woo-Chul;Lee, Jin-Ho;Yu, Tae-U.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.460-463
    • /
    • 2008
  • A large part of the overall industrial energy is dissipated as waste heat despite of much development in the utilization of thermal energy. A mean efficiency is reported to be only around 30 to 35%. The existing waste heat recovery technology has reached its limit and consequently, the development of a new technology is necessary. Improving efficiency using thermoelectric technology has recently come into the spotlight because of its unique way to recover thermal energy. In fact, thermoelectric generator directly converts thermal energy into electric energy by a solid state without any moving parts. Futhermore remarkable improvement in the thermoelectric energy conversion efficiency has been achieved. In this study, a thermoelectric generator was made using commercialized thermoelectric modules. With thermoelectric modules attached on a duct surface, hot air was blown into the duct using a hot air blower. On the other side of the module, a water jacket was attached to cool the module. With different air inlet temperatures and water flowrates, the electrical power of the thermoelectric generator was measured.

  • PDF

Power generation characteristics of thermoelectric module for waste heat energy harvesting (폐열에너지 하베스팅을 위한 열전모듈 발전특성 연구)

  • Yun, Jin Chul;Ju, Jung Myoung;Hwang, Jong Hyun;Park, Seong Jin
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.184-189
    • /
    • 2016
  • Recently, due to limitation of $CO_2$ gas emission and increase of demand to reduce energy consumption, lots of researches are conducted to harvest wasted heat energy with a thermoelectric module to produce electricity by Seebeck effect. This study was conducted to analyze characteristics of the thermoelectric module to apply for a heat energy harvesting device. Thermoelectric module composed of bismuth telluride was tested with various temperature conditions to analyze thermoelectric behavior of the module. Power generation efficiency of the thermoelectric module for various temperature condition was analysed with both experimental and theoretical methods. From the results, an optimum condition to harvest wasted heat energy with the thermoelectric module more efficiently was proposed.

Fundamental Study of the Behavior of Thermoelectric Module on Concrete Structure (콘크리트 구조물에서의 열전모듈 거동에 관한 기초연구)

  • Lim, Chisu;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.33-38
    • /
    • 2015
  • PURPOSES : The purpose of this paper is to investigate the application of thermoelectric technology to concrete structures for harvesting solar energy that would otherwise be wasted. In various fields of research, thermoelectric technology using a thermoelectric module is being investigated for utilizing solar energy. METHODS: In our experiment, a halogen lamp was used to produce heat energy instead of the solar heat. A data logger was used to record the generated voltage over time from the thermoelectric module mounted on a concrete specimen. In order to increase the efficiency of energy harvesting, various factors such as color, architecture, and the ability to prevent heat absorption by the concrete surface were investigated for the placement of the thermoelectric module. RESULTS : The thermoelectric module produced a voltage using the temperature difference between the lower and upper sides of the module. When the concrete specimen was coated with an aluminum foil, a high electric power was measured. In addition, for the power generated at low temperatures, it was confirmed that the voltage was generated steadily. CONCLUSIONS: Thermoelectric technology for energy harvesting can be applied to concrete structures for generating electric power. The generated electricity can be used to power sensors used in structure monitoring in the future.

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung;Kim, Sung Wng
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

A Study on the Performance of Thermoelectric Module and Thermoelectric Cooling System (열전소자 및 열전냉각장치의 성능에 관한 연구)

  • 유성연;홍정표;심우섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • Thermoelectric module is a device that can produce cooling in a direct manner using the electrical energy. The purpose of this study is to investigate the performance of thermoelectric module and cooling system equipped with the thermoelectric module. The performance of a thermoelectric module is estimated using two methods; theoretical analysis based on one-dimensional energy equations and experimental tests using heat source, heat sink and brass conduction extenders. For the thermoelectric cooling system, the temperatures in the chamber are recorded and then compared with those of lumped system analysis. The results show that the cooling capacity and COP of the thermoelectric module increases as the temperature difference between hot and cold surface decreases, and there is particular current at which cooling capacity reaches its maximum value. The experimental results for the thermoelectric cooling system are similar to those of lumped system analysis.

Development of A Floating Solar Thermoelectric Generator Using A Dome Shaped Fresnel Lens for Ocean Application

  • Seong-Hoon Kim;Jeung-Sang Go
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.1001-1010
    • /
    • 2023
  • To solve the problem that photovoltaic panels can not harvest electrical energy at a cloudy day and night, a floating solar thermoelectric generator (FSTEG, hereafter) is studied. The FSTEG is consisted of a dome shaped Fresnel lens to condense solar energy, a thermoelectric module connected with a heat sink to keep temperature difference, a floating system simulating a wavy ocean and an electrical circuit for energy storage. The dome shaped Fresnel lens was designed to have 29 prisms and its optical performance was evaluated outdoors under natural sunlight. Four thermoelectric modules were electrically connected and its performance was evaluated. The generated energy w as stored in a Li-ion battery by using a DC-DC step-up converter. For the application of ocean environment, the FSTEG was covered by the dome shaped Fresnel lens and sealed to float in a water-filled reservoir. The harvested energy shows a potential and a method that the FSTEG is suitable for the energy generation in the ocean environment.

Measuring method of electric resistance using thermoelectric properties of module (열전모듈의 발전특성을 이용한 전기저항 변화 측정)

  • Woo, Byung-Chul;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1332-1334
    • /
    • 2002
  • Thermoelectric generation is the direct energy conversion method from heat th electric power. The conversion method is a very useful utilization of waste energy because of its possibility using a thermal energy below $150^{\circ}C$ This research objective is th establish the thermoelectric technology on a optimum system design method and efficiency, and cost effective thermoelectric element in order to extract the maximum electric power from a wasted hot water. This paper is considered in manufacturing a thermoelectric generator and measuring of electric resistance of module a thermoelectric modules. It was found that the electric resistance of thermoelectric modules was defined as a temperature functions. The relationship between electric resistance and temperature characteristics can be a analogized as function of electric current.

  • PDF

An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles (자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

Stretchable Carbon Nanotube Composite Clays with Electrical Enhancers for Thermoelectric Energy Harvesting E-Skin Patches

  • Tae Uk Nam;Ngoc Thanh Phuong Vo;Jun Su Kim;Min Woo Jeong;Kyu Ho Jung;Alifone Firadaus Nurwicaksono Adi;Jin Young Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Electronic skin (e-skin), devices that are mounted on or attached to human skin, have advanced in recent times. Yet, the development of a power supply for e-skin remains a challenge. A stretchable thermoelectric generator is a promising power supply for the e-skin patches. It is a safe and semi-permanent energy harvesting device that uses body heat for generating power. Carbon nanotube (CNT) clays are used in energy-harvesting e-skin patches. In this study, we report improved thermoelectric performance of CNT clays by using chemical doping and physical blending of thermoelectric enhancers. The n-type and p-type thermoelectric enhancers increase electrical conductivity, leading to increased power factors of the thermoelectric CNT clays. The blend of CNT clays and enhancers is intrinsically stretchable up to 50% while maintaining its thermoelectric property.