• 제목/요약/키워드: thermoelastic problem

검색결과 94건 처리시간 0.025초

고차 축대칭 경계 요소에 의한 소형 터보젯 엔진의 터빈 로우터 디스크 해석 (Higher Order Axismmetric Boundary Element Analysis of Turbine Rotor Disk of the Small Turbojet Engine)

  • Kim, Jin-Woo
    • 한국군사과학기술학회지
    • /
    • 제1권1호
    • /
    • pp.128-144
    • /
    • 1998
  • 일반적인 선형 탄성해석 경계 요소법이 초 고속 회전과 정상 열전도에 의한 열 탄성 효과가 고려된 문제에 적용되었다. 축대칭 경계 요소법 구성이 요약되었고, 등가 경계 적분 방정식의 물체력 핵 함수의 체적 적분 전환방법에 일반화된 내적과 벡터 연산법 개념이 도입되었다. 고차 경계 요소 적용을 위한 이산화 수치 해석법이 요약되었고, 소형 젯트 엔진(ADD 500)의 터어빈 로우터 디스크의 해석 결과가 유한 요소해와 비교되었다.

  • PDF

적외선 열화상 응력측정법에 의한 동적 응력집중계수 예측 (Estimation of Dynamic Stress Concentration Factor by Infrared Thermography Stress Analysis)

  • 최만용;강기수;박정학;안병욱;김경석
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.77-81
    • /
    • 2008
  • Structural components subjected to high frequency vibrations, such as those used in vibrating parts of gas turbine engines, are usually required to avoid resonance frequencies. Generally, the operating frequency is designed at more than resonance frequencies. When a vibrating structure starts or stops, the structure has to pass through a resonance frequency, which results in large stress concentration. This paper presents the transient thermoelastic stress analysis of vibrating cantilever beam using infrared thermography and finite element method (FEM). In FEM, stress concentration factor at the 2nd resonance vibration mode is calculated by the mode superposition method of ANSYS. In experiment, stress distributions are investigated with infrared thermography and dynamic stress concentration factor is estimated. Experimental result is agreed with FEM result within 10.6%. The advantage of this technique is a better immunity to contact problem and geometric limitation in stress analysis of small or micro structures.

Wave propagation at free surface in thermoelastic medium under modified Green-Lindsay model with non-local and two temperature

  • Sachin Kaushal;Rajneesh Kumar;Indu Bala;Gulshan Sharma
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.209-218
    • /
    • 2024
  • The present paper is focused on the study of the propagation of plane waves in thermoelastic media under a modified Green-Lindsay (MG-L) model having the influence of non-local and two temperature. The problem is formulated for the considered model in dimensionless form and is explained by using the reflection phenomenon. The plane wave solution of these equations indicates the existence of three waves namely Longitudinal waves (LD-Wave), Thermal waves (T-wave), and Shear waves (SV-wave) from a stress-free surface. The variation of amplitude ratios is computed analytically and depicted graphically against the angle of incidence to elaborate the impact of non-local, two temperature, and different theories of thermoelasticity. Some particular cases of interest are also deduced from the present investigation. The present study finds applications in a wide range of problems in engineering and sciences, control theory, vibration mechanics, and continuum mechanics.

Extension of the adaptive boundary element scheme for the problem with mixed boundary conditions

  • Kamiya, N.;Aikawa, Y.;Kawaguchi, K.
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.191-202
    • /
    • 1996
  • This paper presents a construction of adaptive boundary element for the problem with mixed boundary conditions such as heat transfer between heated body surface and surrounding medium. The scheme is based on the sample point error analysis and on the extended error indicator, proposed earlier by the authors for the potential and elastostatic problems, and extended successfully to multidomain and thermoelastic analyses. Since the field variable is connected with its derivative on the boundary, their errors are also interconnected by the specified condition. The extended error indicator on each boundary element is modified to meet with the situation. Two numerical examples are shown to indicate the differences due to the prescribed boundary conditions.

Generalized photo-thermal interactions under variable thermal conductivity in a semi-conducting material

  • Aatef D. Hobiny;Ibrahim A. Abbas;C Alaa A. El-Bary
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.641-648
    • /
    • 2023
  • In this article, we explore the issue concerning semiconductors half-space comprised of materials with varying thermal conductivity. The problem is within the framework of the generalized thermoelastic model under one thermal relaxation time. The half-boundary space's plane is considered to be traction free and is subjected to a thermal shock. The material is supposed to have a temperature-dependent thermal conductivity. The numerical solutions to the problem are achieved using the finite element approach. To find the analytical solution to the linear problem, the eigenvalue approach is used with the Laplace transform. Neglecting the new parameter allows for comparisons between numerical findings and analytical solutions. This facilitates an examination of the physical quantities in the numerical solutions, ensuring the accuracy of the proposed approach.

Modeling of fractional magneto-thermoelasticity for a perfect conducting materials

  • Ezzat, M.A.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.707-731
    • /
    • 2016
  • A unified mathematical model of the equations of generalized magneto-thermoelasticty based on fractional derivative heat transfer for isotropic perfect conducting media is given. Some essential theorems on the linear coupled and generalized theories of thermoelasticity e.g., the Lord- Shulman (LS) theory, Green-Lindsay (GL) theory and the coupled theory (CTE) as well as dual-phase-lag (DPL) heat conduction law are established. Laplace transform techniques are used. The method of the matrix exponential which constitutes the basis of the state-space approach of modern theory is applied to the non-dimensional equations. The resulting formulation is applied to a variety of one-dimensional problems. The solutions to a thermal shock problem and to a problem of a layer media are obtained in the present of a transverse uniform magnetic field. According to the numerical results and its graphs, conclusion about the new model has been constructed. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

Study of two dimensional visco-elastic problems in generalized thermoelastic medium with heat source

  • Baksi, Arup;Roy, Bidyut Kumar;Bera, Rasajit Kumar
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.673-687
    • /
    • 2008
  • In this paper, a thermo-viscoelastic problem in an infinite isotropic medium in two dimensions in the presence of a point heat source is considered. The fundamental equations of the problems of generalized thermoelasticity including heat sources in a thermo-viscoelastic media have been derived in the form of a vector matrix differential equation in the Laplace-Fourier transform domain for a two dimensional problem. These equations have been solved by the eigenvalue approach. The results have been compared to those available in the existing literature. The graphs have been drawn for different cases.

Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory

  • Othman, Mohamed I.A.;Atwa, Sarhan Y.
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.249-259
    • /
    • 2020
  • In this work, a novel three-dimensional model in the generalized thermoelasticity for a homogeneous an isotropic medium was investigated with diffusion, under the effect of thermal loading due to laser pulse in the context of Green-Lindsay theory was investigated. The normal mode analysis technique is used to solve the resulting non-dimensional equations of the problem. Numerical results for the displacement, the thermal stress, the strain, the temperature, the mass concentration, and the chemical potential distributions are represented graphically to display the effect of the thermal loading due to laser pulse and the relaxation time on the resulting quantities. Comparisons are made within the theory in the presence and absence of laser pulse.

FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD SUBJECTED TO DIFFERENT TYPES OF THERMAL LOADING - DIRECT APPROACH

  • GAIKWAD, KISHOR R.;BHANDWALKAR, VIDHYA G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권3호
    • /
    • pp.117-131
    • /
    • 2021
  • The problem of generalized thermoelasticity of two-temperature for finite piezoelectric rod will be modified by applying three different types of heating applications namely, thermal shock, ramp-type heating and harmonically vary heating. The solutions will be derived with direct approach by the application of Laplace transform and the Caputo-Fabrizio fractional order derivative. The inverse Laplace transforms are numerically evaluated with the help of a method formulated on Fourier series expansion. The results obtained for the conductive temperature, the dynamical temperature, the displacement, the stress and the strain distributions have represented graphically using MATLAB.

A GN model of thermoelastic interaction in a 2D orthotropic material due to pulse heat flux

  • Hobiny, Aatef;Abbas, Ibrahim A.
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.669-675
    • /
    • 2021
  • A GN model with and without energy dissipations is used to discuss the waves propagation in a two-dimension orthotropic half space by the eigenvalues approach. Using the Laplace-Fourier integral transforms to get the solutions of the problem analytically, the basic formulations of the two-dimension problem are given by matrices-vectors differential forms, which are then solved by the eigenvalues scheme. Numerical techniques are used for the inversion processes of the Laplace-Fourier transform. The results for physical quantities are represented graphically. The numerical outcomes show that the characteristic time of pulse heat flux have great impacts on the studied fields values.