• 제목/요약/키워드: thermoelastic medium

검색결과 68건 처리시간 0.019초

Rotational and fractional effect on Rayleigh waves in an orthotropic magneto-thermoelastic media with hall current

  • Lata, Parveen;Himanshi, Himanshi
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.723-732
    • /
    • 2022
  • The present research is concerned to study the effect of fractional parameter and rotation on the propagation of Rayleigh waves in an orthotropic magneto-thermoelastic media with three-phase-lags in the context of fractional order theory of generalized thermoelasticity with combined effect of rotation and hall current. The secular equations of Rayleigh waves are derived by using the appropriate boundary conditions. The wave properties such as phase velocity, attenuation coefficient are computed numerically and the numerical simulated results are presented through graphs to show the effect on all the components. Some special cases are also discussed in the present investigation.

Plane harmonic waves in fractional orthotropic magneto-thermoelastic solid with rotation and two-temperature

  • Himanshi;Parveen Lata
    • Coupled systems mechanics
    • /
    • 제12권2호
    • /
    • pp.103-125
    • /
    • 2023
  • The present research is focused on the study of plane harmonic waves in a two-dimensional orthotropic magneto-thermoelastic media with fractional order theory of generalized thermoelasticity in the light of two-temperature and rotation due to time harmonic sources. Here, we studied three types of waves namely quasi-longitudinal (QL), quasi-transverse (QTS) and quasi thermal (QT) waves. The variations in the wave properties such as phase velocity, attenuation coefficient and specific loss have been noticed with respect to frequency for the reflected waves. Further the value of amplitude ratios, energy ratios and penetration depth are computed numerically with respect to angle of incidence. The numerical simulated results are presented graphically to show the effect of fractional parameter based on its conductivity (0<α<1 for weak, α=1 for normal, 1<α≤2 for strong conductivity) on all the components.

The effect of magnetic field and inclined load on a poro-thermoelastic medium using the three-phase-lag model

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.243-251
    • /
    • 2024
  • In the current work, a poro-thermoelastic half-space issue with temperature-dependent characteristics and an inclined load is examined in the framework of the three-phase-lag model (3PHL) while taking into account the effects of magnetic and gravity fields. The resulting coupled governing equations are non-dimensional and are solved by normal mode analysis. To investigate the impacts of the gravitational field, magnetic field, inclined load, and an empirical material constant, numerical findings are graphically displayed. MATLAB software is used for numerical calculations. Graphs are used to visualize and analyze the computational findings. It is found that the physical quantities are affected by the magnetic field, gravity field, the nonlocal parameter, the inclined load, and the empirical material constant.

A novel model of a rotating nonlocal micropolar thermoelastic medium with temperature-dependent properties

  • Samia M. Said;Elsayed M. Abd-Elaziz;Mohamed I.A. Othman
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.429-434
    • /
    • 2024
  • In the current work, the effect of rotation and mechanical force on a nonlocal micropolar thermoelastic solid with temperature-dependent properties was discussed using Erigen's nonlocal thermoelasticity theory. The problem is resolved using Laplace transforms and Fourier series. For the nonlocal and local parameters, the physical fields have been illustrated. The numerical inversion approach is used to acquire the resulting fields in the physical domain. Based on numerical analysis, the effects of rotation, the modulus of elasticity's dependency on temperature, and nonlocal, mechanical force are examined on the physical fields.

Rayleigh waves in anisotropic magnetothermoelastic medium

  • Kumar, Rajneesh;Sharma, Nidhi;Lata, Parveen;Abo-Dahab, S.M.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.317-333
    • /
    • 2017
  • The present paper is concerned with the investigation of Rayleigh waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature, in the presence of Hall current and rotation. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi theories of Type-II and Type-III. Secular equations are derived mathematically at the stress free and thermally insulated boundaries. The values of Determinant of secular equations, phase velocity and Attenuation coefficient with respect to wave number are computed numerically. Cobalt material has been chosen for transversely isotropic medium and magnesium material is chosen for isotropic solid. The effects of rotation, magnetic field and phase velocity on the resulting quantities and on particular case of isotropic solid are depicted graphically. Some special cases are also deduced from the present investigation.

Wave propagation at free surface in thermoelastic medium under modified Green-Lindsay model with non-local and two temperature

  • Sachin Kaushal;Rajneesh Kumar;Indu Bala;Gulshan Sharma
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.209-218
    • /
    • 2024
  • The present paper is focused on the study of the propagation of plane waves in thermoelastic media under a modified Green-Lindsay (MG-L) model having the influence of non-local and two temperature. The problem is formulated for the considered model in dimensionless form and is explained by using the reflection phenomenon. The plane wave solution of these equations indicates the existence of three waves namely Longitudinal waves (LD-Wave), Thermal waves (T-wave), and Shear waves (SV-wave) from a stress-free surface. The variation of amplitude ratios is computed analytically and depicted graphically against the angle of incidence to elaborate the impact of non-local, two temperature, and different theories of thermoelasticity. Some particular cases of interest are also deduced from the present investigation. The present study finds applications in a wide range of problems in engineering and sciences, control theory, vibration mechanics, and continuum mechanics.

열충격하 적층체의 열탄성 구배기능 계면영역을 고려한 동일선상 복수균열 해석 (Collinear cracks in a layered structure with a thermoelastically graded interfacial zone under thermal shock)

  • 최형집;진태은;이강용
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.779-789
    • /
    • 1998
  • In this paper, the thermal shock responses of collinear cracks in a layered medium are investigated based on the uncoupled, quasi-static plane thermoelasticity. The medium is modeled as a bonded structure composed of a surface layer and a semi-infinite substrate. Between these two dissimilar homogeneous constituents, a functionally graded interfacial zone exists with the nonhomogeneous features of continuously varying thermoelastic properties. Three cracks are assumed to be present in the layered medium, one in each one of the constituent materials, aligned collinearly normal to the nominal interfaces. A system of singular integral equations is solved, subjected to the forcing terms of equivalent transient thermal tractions acting on the locations of cracks via superposition. Main results presented are the transient thermal stress intensity factors to illustrate the parametric effects of various geometric and amterial combinations of the medium with the thermoelastically graded interfacial zone and the collinear cracks.

Photo-thermo-elastic interaction in a semiconductor material with two relaxation times by a focused laser beam

  • Jahangir, A.;Tanvir, F.;Zenkour, A.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권1호
    • /
    • pp.41-52
    • /
    • 2020
  • The effect of relaxation times is studied on plane waves propagating through semiconductor half-space medium by using the eigen value approach. The bounding surface of the half-space is subjected to a heat flux with an exponentially decaying pulse and taken to be traction free. Solution of the field variables are obtained in the form of series for a general semiconductor medium. For numerical values, Silicon is considered as a semiconducting material. The results are represented graphically to assess the influences of the thermal relaxations times on the plasma, thermal, and elastic waves.

Study of two dimensional visco-elastic problems in generalized thermoelastic medium with heat source

  • Baksi, Arup;Roy, Bidyut Kumar;Bera, Rasajit Kumar
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.673-687
    • /
    • 2008
  • In this paper, a thermo-viscoelastic problem in an infinite isotropic medium in two dimensions in the presence of a point heat source is considered. The fundamental equations of the problems of generalized thermoelasticity including heat sources in a thermo-viscoelastic media have been derived in the form of a vector matrix differential equation in the Laplace-Fourier transform domain for a two dimensional problem. These equations have been solved by the eigenvalue approach. The results have been compared to those available in the existing literature. The graphs have been drawn for different cases.

Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory

  • Othman, Mohamed I.A.;Atwa, Sarhan Y.
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.249-259
    • /
    • 2020
  • In this work, a novel three-dimensional model in the generalized thermoelasticity for a homogeneous an isotropic medium was investigated with diffusion, under the effect of thermal loading due to laser pulse in the context of Green-Lindsay theory was investigated. The normal mode analysis technique is used to solve the resulting non-dimensional equations of the problem. Numerical results for the displacement, the thermal stress, the strain, the temperature, the mass concentration, and the chemical potential distributions are represented graphically to display the effect of the thermal loading due to laser pulse and the relaxation time on the resulting quantities. Comparisons are made within the theory in the presence and absence of laser pulse.