• 제목/요약/키워드: thermoelastic deformation

검색결과 57건 처리시간 0.027초

쌍로울형 박판연속주조공정의 개발과 자동화에 관한 연구 (The Study on Automation and Development of Strip Continuous Casting by Twin Roller Type)

  • 이상매;김영도;백남주;강충길
    • 한국정밀공학회지
    • /
    • 제7권1호
    • /
    • pp.37-52
    • /
    • 1990
  • In this study, the characteristics of cooling and rolling during strip casting process is obtained in comparison with the experimental and analytical results. The prupose of this study is to effectively analyze the thermal and mechanical deformation of roller applying the results of the heat transfer and the pressure distribution to boundary conditions. And then the relation between strip thickness and roll deformation is shown. The second purpose is to obtain the proper condition of the continuous casting for stainless steel. The summary and conclusions can be made on the basis of the results obtained by the theories and experiments. a) The strip casting condition for the fine surface quality of tin-alloy as-cast material was obtained in accordance with the velocity of roll rotation and initial roll gap. b) The experimental condition that the dimension of the cast strip thickness coincide with that of the initial roll gap was according to the experimental result of continuous casting by twin-roll type. c) The thermoelastic finite element model to calculate the roll deformation is represented. Thermoelastic model prediction for the roll deformation are in good agreement with the experimental results considering the thermal expansion of the roll. d) The higher cooling rates were obtained by a twin-roller quenching technique. Also quenched microstructure of the rapidly solidified shell was verified. e) The magnitude of roll deformation due to the thermal expansion and roll separating force is quantit- atively represented in the analysis of continuous casting for stainless steel.

  • PDF

사출 성형품의 금형내 잔류응력과 이형후 냉각에 의한 후변형 해석 (Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Cooling after Ejection)

  • 양상식;권태헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.251-256
    • /
    • 2001
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of the thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint has been done. Free volume theory has been used for the non-equilibrium density state by the fast cooling. At ejection, the redistribution of stress together with instantaneous deformation has been considered. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of deformation. Two typical mold geometries are used to test the numerical simulation.

  • PDF

기하적인 형상 변형을 이용한 선박 브라켓 부재의 역변형 설계 (Counter-deforming Method for a Bracket Design of a Ship Via Geometric Shape Deformation)

  • 천상욱;김형철
    • 한국CDE학회논문집
    • /
    • 제18권5호
    • /
    • pp.321-328
    • /
    • 2013
  • A method of designing a manufacturing shape of ship plate parts considering welding deformation is introduced. In this paper, the design shape of a bracket is deformed not by a thermoelastic method but by a pure geometric method. Deformation quantities are estimated based on data captured in the field and then a manufacturing design shape is obtained by deforming an original design shape by a geometric deformation method. The proposed method has been implemented and tested in the shipyard.

Transient thermoelastic analysis of carbon/carbon composite multidisc brake using finite element method

  • Ghashochi-Bargh, Hadi;Goodarzi, Mohammad-Saeed;Karimi, Masoud;Salamat-Talab, Mazaher
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.135-149
    • /
    • 2020
  • In the current paper, a generalization of the results of Zhao et al. (2008) on a new design of C/C composite multidisc brake system is presented. The purpose of this paper is to study the effect of thermal sensitivity of Carbon/Carbon (C/C) composite material on the temperature distributions, deformation, and stress during braking. In this regard, a transient temperature-displacement coupled analysis for C/C composite brake discs with frictional heat generation under simulated operating conditions is performed. An axisymmetric model for brake system is used for the finite element analysis according to the theory of energy transformation and transportation. The transient temperature distributions on the friction surfaces, deformation, and stress are obtained. To check the validity, the results are corroborated with other solutions available in the literature, wherever possible. The current study could be used as a guide in the initial design of a high performance multidisc brake system.

Thermo-optical Analysis and Correction Method for an Optical Window in Low Temperature and Vacuum

  • Ruoyan Wang;Ruihu Ni;Zhishan Gao;Lingjie Wang;Qun Yuan
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.213-221
    • /
    • 2023
  • The optical window, as a part of the collimator system, is the connector between the outside light source and the optical system inside a vacuum tank. The temperature and pressure difference between the two sides of the optical window cause not only thermoelastic deformation, but also refractive-index irregularities. To suppress the influence of these two changes on the performance of the collimator system, thermo-optical analysis is employed. Coefficients that characterize the deformations and refractive-index distributions are derived through finite-element analysis, and then imported into the collimator system using a user-defined surface in ZEMAX. The temperature and pressure difference imposed on the window seriously degrade the system performance of the collimator. A decentered and tilted lens group is designed to correct both field aberrations and the thermal effects of the window. Through lens-interval adjustment of the lens group, the diffraction-limited performance of the collimator can be maintained with a vacuum level of 10-5 Pa and inside temperature ranging from -100 ℃ to 20 ℃.

Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation

  • Rachedi, Mohamed Ali;Benyoucef, Samir;Bouhadra, Abdelhakim;Bouiadjra, Rabbab Bachir;Sekkal, Mohamed;Benachour, Abdelkader
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.65-80
    • /
    • 2020
  • This paper presents a theoretical investigation on the response of the thermo-mechanical bending of FG plate on variable elastic foundation. A quasi-3D higher shear deformation theory is used that contains undetermined integral forms and involves only four unknowns to derive. The FG plates are supposed simply supported with temperature-dependent material properties and subjected to nonlinear temperature rise. Various homogenization models are used to estimate the effective material properties such as temperature-dependent thermoelastic properties. Equations of motion are derived from the principle of virtual displacements and Navier's solution is used to solve the problem of simply supported plates. Numerical results for deflections and stresses of FG plate with temperature-dependent material properties are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of FG thick plates.

고온 열분해 환경의 다공성 탄소/페놀릭 복합재의 열기계적 거동 (Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments)

  • 김성준;한수연;신의섭
    • 한국항공우주학회지
    • /
    • 제39권8호
    • /
    • pp.711-718
    • /
    • 2011
  • 본 논문에서는 열화학적 분해 및 열기계학적 변형이 고려된 구성 방정식을 사용하여 다공성 탄소/페놀릭 복합재료의 열탄성 거동을 예측하였다. 다공성 복합재료의 온도 의존성 및 열화학적 분해 과정에서의 기공도, 분해 가스에 의한 기공 압력, 재료의 수축을 고려하였다. 기공도와 기공 압력이 고려된 대표 체적 요소 모델의 유한요소 해석을 통해 산출된 거시적 기공 탄성 계수를 구성 방정식에 적용하였다. 간단한 수치 실험을 통해 기공탄성 계수가 다공성 재료의 열탄성 거동에 미치는 영향을 분석하였으며, 재료 내부에 형성된 기공과 기공 압력에 의한 응력 구배 및 변형을 확인하였다.

원통결합부의 열특성 해석 (제1보) -주축베어링 내륜계의 수치해석을 중심으로- (Analysis of the thermoelastic begavior on the contact joint of compound cylinder)

  • 김선민;박기환;이선규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.629-634
    • /
    • 1996
  • Heat generation in machine operating condition makes thermal deformation and thermalstress in the structure, which results in the change the contact characteristics of machine joint such s change of shrinkage fit, contact heat conductance and contact pressure. As the change of contact pressure is related to variation of static, dynamic and thermalcharacteristics, the prediction of transient contact perssure is strongly required. This paper presents some analytical results which will be effective to predict static and dynamic characteristics of the compound cylindrical structure.

  • PDF

Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives

  • Lata, Parveen;Singh, Sukhveer
    • Coupled systems mechanics
    • /
    • 제9권5호
    • /
    • pp.397-410
    • /
    • 2020
  • The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the solution to the problem in the transformed domain. The analytical expressions for displacement components, stress components and conductive temperature are obtained in the transformed domain. For obtaining the results in the physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal material sciences.

경사기능재료 사각판의 열탄성 및 동적해석 (Thermoelastic and Dynamic Analysis of Functionally Graded Rectangular Plates)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.474-482
    • /
    • 2005
  • A theoretical method is presented to investigate the thermoelastic and dynamic response of functionally graded material (FGM) rectangular plates made up of metal and ceramic. The temperature is assumed to be constant in the plane of the plate and to vary in the thickness direction only. Material properties are assumed to be temperature-dependant, and vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The third order shear deformation theory (TSDT) to account for rotary inertia and transverse shear strains is adopted to formulate the theoretical model. The modal analysis technique is used to develop the analytic solutions of the dynamic problem. The effect of material compositions and temperature fields is examined. The present theoretical results are verified by comparing with those from finite element analysis by ANSYS.