Browse > Article
http://dx.doi.org/10.12989/gae.2020.22.1.065

Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation  

Rachedi, Mohamed Ali (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Benyoucef, Samir (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Bouhadra, Abdelhakim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Bouiadjra, Rabbab Bachir (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Sekkal, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Benachour, Abdelkader (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Publication Information
Geomechanics and Engineering / v.22, no.1, 2020 , pp. 65-80 More about this Journal
Abstract
This paper presents a theoretical investigation on the response of the thermo-mechanical bending of FG plate on variable elastic foundation. A quasi-3D higher shear deformation theory is used that contains undetermined integral forms and involves only four unknowns to derive. The FG plates are supposed simply supported with temperature-dependent material properties and subjected to nonlinear temperature rise. Various homogenization models are used to estimate the effective material properties such as temperature-dependent thermoelastic properties. Equations of motion are derived from the principle of virtual displacements and Navier's solution is used to solve the problem of simply supported plates. Numerical results for deflections and stresses of FG plate with temperature-dependent material properties are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of FG thick plates.
Keywords
quasi-3D solution; FG thick plates; homogenization models; temperature-dependent material; thermo-mechanical bending;
Citations & Related Records
Times Cited By KSCI : 105  (Citation Analysis)
연도 인용수 순위
1 Lee, N.J., Lai., G.S., Lau, W.J. and Ismail, A.F. (2020), "Effect of poly(ethylene glycol) on the properties of mixed matrix membranes for improved filtration of highly concentrated oily solution", Compos. Mater. Eng. 2(1), 43-51. https://doi.org/10.12989/cme.2020.2.1.043.
2 Li, D., Deng, Z. and Xiao, H. (2016), "Thermomechanical bending analysis of functionally graded sandwich plates using four-variable refined plate theory", Compos. B Eng., 106, 107-119. http://doi.org/10.1016/j.compositesb.2016.08.041.   DOI
3 Li, D., Deng, Z., Chen, G., Xiao, H. and Zhu, L. (2017), "Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core", Compos Struct., 169, 29-41. http://doi.org/10.1016/j.compstruct.2017.01.026.   DOI
4 Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Adda Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.   DOI
5 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.   DOI
6 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.   DOI
7 Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.   DOI
8 Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, S.R. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.   DOI
9 Cong, P.H., An, P.T.N. and Duc, N.D. (2015), "Nonlinear stability of shear deformable eccentrically stiffened functionally graded plates on elastic foundations with temperature-dependent properties", Sci. Eng. Compos. Mater., 24(3), 1-15. https://doi.org/10.1515/secm-2015-0225.
10 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
11 Mishnaevsky, J.L. (2007), Computational Mesomechanics of Composites, John Wiley & Sons, U.K.
12 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.   DOI
13 Nemati, A.R. and Mahmoodabadi, M.J. (2019), "Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler-Pasternak foundation in various thermal environments", Arch. Appl. Mech., 1-33. https://doi.org/10.1007/s00419-019-01646-6.
14 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.   DOI
15 Cong, P.H., Anh, V.M. and Duc, N.D. (2017), "Nonlinear dynamic response of eccentrically stiffened FGM plate using Reddy's TSDT in thermal environment", J. Therm. Stresses, 40(6), 704-732. http://doi.org/10.1080/01495739.2016.1261614.   DOI
16 Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.   DOI
17 Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.   DOI
18 Achouri, F., Benyoucef, S., Bourada, F, Bachir Bouiadjra, R. and Tounsi, A. (2019), "Robust quasi 3D computational model for mechanical response of FG thick sandwich plate", Struct. Eng. Mech., 70(5), 571-589. https://doi.org/10.12989/sem.2019.70.5.571.   DOI
19 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
20 Esmaeili, M. and Beni, Y.T. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/JACM.2019.27857.1439.
21 Fenjan, R.M., Ahmed R.A. and Faleh, N.M. (2019a), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.   DOI
22 Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019a), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.   DOI
23 Fladr, J., Bily, P. and Broukalova, I. (2019), "Evaluation of steelfiber distribution in concrete by computer aided image analysis", Compos. Mater. Eng., 1(1),49-70. https://doi.org/10.12989/cme.2019.1.1.049.
24 Salamat, D. and Sedighi, H.M. (2017), "The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle", J. Appl. Comput. Mech., 3(3), 208-217. https://doi.org/10.22055/jacm.2017.12740.
25 Nguyen, D.D., Cong, P.H. and Quang, V.D. (2016), hermal stability of eccentrically stiffened FGM plate on elastic foundation based on Reddy's third-order shear deformation plate theory", J. Therm. Stresses, 39(7), 772-794. http://dx.doi.org/10.1080/01495739.2016.1188638.   DOI
26 Nguyen, D.D., Nguyen, D.K. and Hoang, T.T. (2018) "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 25(13), 1156-1167. http://doi.org/10.1080/15376494.2017.1341581.   DOI
27 Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.   DOI
28 Sahla, F., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.   DOI
29 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.   DOI
30 Sayyad, A. and Ghumare, S. (2019), "A new quasi-3D model for functionally graded plates", J. Appl. Comput. Mech., 5(2), 367-380. https://doi.org/10.22055/JACM.2018.26739.1353.
31 Ghadimi, M.G. (2020), "Buckling of non-sway Euler composite frame with semi-rigid connection", Compos. Mater. Eng., 2(1), 13-24. https://doi.org/10.12989/cme.2020.2.1.013.
32 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
33 Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. http://doi.org/10.1016/j.compstruct.2014.09.031.   DOI
34 Akbas, S.D. (2019), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. https://doi.org/10.22055/JACM.2018.26819.1360.
35 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.   DOI
36 Gasik, M. (1995), "Scand. Ch226", Acta Polytech., 72.
37 Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique", Compos. Mater. Eng., 2(1), 25-41. https://doi.org/10.12989/cme.2020.2.1.025.
38 Ouakad, H.M., Sedighi, H.M. and Al-Qahtani, H.M. (2020), "Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects", Adv. Nano Res., 8(3), 245-254. https://doi.org/10.12989/anr.2020.8.3.245.   DOI
39 Nikkhoo, A., Asili, S., Sadigh, S., Hajirasouliha, I. and Karegar, H. (2019), "A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses", Adv. Comput. Des., 4(3), 307-326. https://doi.org/10.12989/acd.2019.4.3.307.   DOI
40 Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisciplin. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.   DOI
41 Panjehpour, M., Loh, E.W.K. and Deepak, TJ. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civ. Eng. Archit., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
42 Parida, S. and Mohanty, S.C. (2017), "Thermoelastic vibration analysis of functionally graded skew plate using nonlinear finite element method", J, Therm. Stresses, 40(9), 1111-1133. https://doi.org/10.1080/01495739.2017.1290513.   DOI
43 Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.   DOI
44 Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Modified model for instability analysis of symmetric FGM double-sided nano-bridge: Corrections due to surface layer, finite conductivity and size effect", Compos. Struct., 132, 545-557. https://doi.org/10.1016/j.compstruct.2015.05.076.   DOI
45 Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.   DOI
46 Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.   DOI
47 Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.   DOI
48 Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.   DOI
49 Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.   DOI
50 Shokrieh, M.M. and Kondori, M.S, (2020), "Effects of adding graphene nanoparticles in decreasing of residual stresses of carbon/epoxy laminated composites", Compos. Mater. Eng., 2(1), 53-64. https://doi.org/10.12989/cme.2020.2.1.053.
51 Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/S1758825115500829.
52 Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.   DOI
53 Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R and Alwabli, S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundation", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.   DOI
54 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.   DOI
55 Almitani, K.H. (2018), "Buckling behaviors of symmetric and antisymmetric functionally graded beams", J. Appl. Comput. Mech., 4(2), 115-124. https://doi.org/10.22055/jacm.2017.23040.1147.
56 Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.   DOI
57 Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020b), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411.   DOI
58 Ghiasian, S.E., Kiani Y., Sadighi, M. and Eslami, M.R., (2014), "Thermal buckling of shear deformable temperature dependent circular/annular FGM plates", Int. J. Mech. Sci., 81, 137-148. http://dx.doi.org/10.1016/j.ijmecsci.2014.02.007.   DOI
59 Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., 8(3),179. https://doi.org/10.12989/amr.2019.8.3.179.   DOI
60 Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636219845841.
61 Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.   DOI
62 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.   DOI
63 Jaesang, Y. and Addis, K. (2014), "Modeling functionally graded materials containing multiple heterogeneities", Acta Mech., 225(7), 1931-1943. https://doi.org/10.1007/s00707-013-1033-9.   DOI
64 Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.   DOI
65 Ping, Z., Zhang, L.W. and Liew, K.M., (2014), "Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation", Compos. Struct., 107, 298-314. https://doi.org/10.1016/j.compstruct.2013.08.001.   DOI
66 Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407 (2020). https://doi.org/10.1007/s42452-020-2182-9.   DOI
67 Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.   DOI
68 Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.   DOI
69 Trinh, L.C., Vo, T.P., Thai, H.T. and Mantari, J.L. (2017), "Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads", Compos. B Eng., 124, 218-241. https://doi.org/10.1016/j.compositesb.2017.05.042.   DOI
70 Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.   DOI
71 Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.   DOI
72 Ramirez, D., Cuba, L., Mantari, J.L., and Arciniega, R.A. (2019), "Bending and free vibration analysis of functionally graded plates via optimized non-polynomial higher order theories", J. Appl. Comput. Mech., 5(2), 281-298. https://doi.org/10.22055/JACM.2018.25177.1237.
73 Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stresses, 21(6), 593-629. http://doi.org/10.1080/01495739808956165.   DOI
74 Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.   DOI
75 Reuss, A. (1929), "Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle", J. Appl. Math. Mech., 9, 49-58 (in German).
76 Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019),"Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.   DOI
77 Bachir Bouiadjra, R., Mahmoudi, A., Benyoucef, S., Tounsi, A. and Bernard, F., (2018), "Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models", Struct. Eng. Mech., 66(3), 317-328. https://doi.org/10.12989/sem.2018.66.3.317.   DOI
78 Bakhshi, N. and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1), 71-90. https://doi.org/10.12989/cme.2019.1.1.071.
79 Trinh, M.C. and Kim, S.E. (2018), "Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment", Aerosp. Sci. Technol., 84, 672-685. https://doi.org/10.1016/j.ast.2018.09.018.   DOI
80 Voigt, W., (1889), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann. Phys., 38, 573-587.   DOI
81 Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
82 Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409.   DOI
83 Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.   DOI
84 Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.   DOI
85 Zhu, P., Zhang, L.W. and Liew, K.M. (2014), "Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation", Compos. Struct., 107, 298-314. https://doi.org/10.1016/j.compstruct.2013.08.001.   DOI
86 Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra Bouiadjra, R. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053.   DOI
87 Yoosefian, A.R., Golmakani, M.E. and Sadeghian, M. (2020), "Nonlinear bending of functionally graded sandwich plates under mechanical and thermal load", Commun. Nonlin. Sci. Numer. Simul., 84, 105161. https://doi.org/10.1016/j.cnsns.2019.105161.   DOI
88 Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.   DOI
89 Zimmerman, R.W. (1994), "Behavior of the Poisson ratio of a two-phase composite material in the high-concentration limit", Appl. Mech. Rev., 47(1), 38-44. https://doi.org/10.1115/1.3122819.   DOI
90 Zuiker, J.R. (1995), "Functionally graded materials-choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819. https://doi.org/10.1016/0961-9526(95)00031-H.   DOI
91 Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.   DOI
92 Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007.   DOI
93 Kar, V.R. and Panda, S.K. (2020), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.   DOI
94 Karami, B., Janghorban, M and Tounsi, A. (2019b), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Braz. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.   DOI
95 Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-019-00732-1.
96 Bessaim, A., Houari, M.S.A., Bousahla, A.A., Kaci, A., Tounsi, A., and Adda Bedia, E.A. (2018), "Buckling analysis of embedded nanosize FG beams based on a refined hyperbolic shear deformation theory", J. Appl. Comput. Mech., 4(3), 140-146. https://doi.org/10.22055/JACM.2017.22996.1146.
97 Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.   DOI
98 Kolahchi, R., Safaria, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.   DOI
99 Kossakowski, P.G. and Uzarska, I. (2019), "Numerical modeling of an orthotropic RC slab band system using the Barcelona model", Adv. Comput. Des., 4(3), 211-221. https://doi.org/10.12989/acd.2019.4.3.211.   DOI
100 Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.   DOI
101 Bohlooly, M., Fard, K.M. (2019), "Buckling and postbuckling of concentrically stiffened piezo-composite plates on elastic foundations", J. Appl. Comput. Mech., 5(1), 128-140. https://doi.org/10.22055/JACM.2018.25539.1277.
102 Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.   DOI
103 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.   DOI
104 Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, In Press.
105 Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.   DOI