• 제목/요약/키워드: thermoelastic analysis

검색결과 137건 처리시간 0.026초

Analysis of wave motion in an anisotropic initially stressed fiber-reinforced thermoelastic medium

  • Gupta, Raj Rani;Gupta, Rajani Rani
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.1-10
    • /
    • 2013
  • The present investigation deals with the analysis of wave motion in the layer of an anisotropic, initially stressed, fiber reinforced thermoelastic medium. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and temperature distribution were also obtained. Finally, the numerical solution was carried out for Cobalt and the dispersion curves, amplitudes of displacements and temperature distribution for symmetric and skew-symmetric wave modes are presented to evince the effect of anisotropy. Some particular cases are also deduced.

The effect of rotation on piezo-thermoelastic medium using different theories

  • Othman, Mohamed I.A.;Ahmed, Ethar A.A.
    • Structural Engineering and Mechanics
    • /
    • 제56권4호
    • /
    • pp.649-665
    • /
    • 2015
  • The present paper attempts to investigate the propagation of plane waves in generalized piezo-thermoelastic medium under the effect of rotation. The normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress and the strain components. Comparisons are made with the results predicted by different theories (Coupled theory, Lord-Schulman, Green-Lindsay) in the absence and presence of rotation.

경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석 (Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate)

  • 김귀섭
    • 한국항공우주학회지
    • /
    • 제32권8호
    • /
    • pp.91-100
    • /
    • 2004
  • 경사기능재료 판에 대한 열탄성 변형과 응력 해석을 위해 Green 함수 방법이 채택되었다. 3 차원 비정상 온도분포에 대한 해는 적층판 이론에 의해 얻어진다. 열탄성 문제에 대한 기본 방정식은 각각 평면외 (out-plane) 변형과 평면내 (in-plane) 힘에 의해 유도되었다. 굽힘과 평면내 힘에 의한 열탄성 변형과 응력분포는 Galerkin 방법에 근거한 Green 함수를 이용하여 해석하였다. 열탄성 변형과 응력분포 해석을 위한 Galerkin Green 함수의 특성함수들은 사각판의 제차 경계조건을 만족시키는 허용함수들의 급수 형태로 근사화되었다. 단수지시된 사각 판에 대한 수치해석이 수행되었으며, 정사기능재료의 물성치가 판의 비정상 열탄성 거동에 미치는 영향이 검토되었다.

Oscillation of Microbeam Structure with Irregular Mass Distribution

  • Kang, Seok-Joo;Kim, Jung-Hwan;Kim, Ji-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.528-532
    • /
    • 2013
  • 본 연구에서는, 해석적 모델로 불규칙하게 분포된 질량을 가진 열탄성 댐핑을 포함하는 마이크로빔 구조물을 연구하였다. 마이크로 스케일의 기계적 공명체(mechanical resonator)에 대한 열탄성 댐핑의 중요성은 높은 Q-factor를 설계하는데 고려된다. 본 연구에서의 빔 모델은 Euler-Bernoulli 빔 이론을 기조로 한다. 빔의 고유 진동수를 결정하기 위하여, 에너지 기법이 적용되었다. 또한, 열탄성 댐핑 효과는 열전도 방정식을 사용할으로써 고려되었고, Q-factor가 결정될 수 있었다. 운동방정식의 유도에는 체계적인 무차원화를 수행하였다. 임의의 집중된 질량을 포함하는 열탄성 댐핑을 가진 마이크로빔에 대해 모델의 결과값을 입증하였고 mode shape과 Q-factor를 제시하였다.

  • PDF

Two-temperature thermoelastic surface waves in micropolar thermoelastic media via dual-phase-lag model

  • Abouelregal, A.E.;Zenkour, A.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.711-727
    • /
    • 2017
  • This article is concerned with a two-dimensional problem of micropolar generalized thermoelasticity for a half-space whose surface is traction-free and the conductive temperature at the surface of the half-space is known. Theory of two-temperature generalized thermoelasticity with phase lags using the normal mode analysis is used to solve the present problem. The formulas of conductive and mechanical temperatures, displacement, micro-rotation, stresses and couple stresses are obtained. The considered quantities are illustrated graphically and their behaviors are discussed with suitable comparisons. The present results are compared with those obtained according to one temperature theory. It is concluded that both conductive heat wave and thermodynamical heat wave should be separated. The two-temperature theory describes the behavior of particles of elastic body more real than one-temperature theory.

Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse

  • Abbas, Ibrahim A.;Alzahrani, Faris S.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.791-803
    • /
    • 2016
  • In this article, the problem of a two-dimensional thermoelastic half-space are studied using mathematical methods under the purview of the generalized thermoelastic theory with one relaxation time is studied. The surface of the half-space is taken to be thermally insulated and traction free. Accordingly, the variations of physical quantities due to by laser pulse given by the heat input. The nonhomogeneous governing equations have been written in the form of a vector-matrix differential equation, which is then solved by the eigenvalue approach. The analytical solutions are obtained for the temperature, the components of displacement and stresses. The resulting quantities are depicted graphically for different values of thermal relaxation time. The result provides a motivation to investigate the effect of the thermal relaxation time on the physical quantities.

Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources

  • Lata, Parveen;Kaur, Iqbal
    • Coupled systems mechanics
    • /
    • 제8권5호
    • /
    • pp.415-437
    • /
    • 2019
  • The present research deals with two-dimensional axisymmetric deformation in transversely isotropic magneto thermoelastic solid with and without energy dissipation, with two temperature and time-harmonic source. The proposed model is helpful for finding the type of relations between mechanical and thermal fields as most of the structural elements of heavy industries are frequently related to mechanical and thermal stresses at a higher temperature. The Hankel transform has been used to find a solution to the problem. The displacement components, stress components, and temperature distribution with the horizontal distance in the physical domain are calculated numerically. The effect of time-harmonic source and two temperature is depicted graphically on the resulting quantities.

Effect of the gravity on a nonlocal micropolar thermoelastic media with the multi-phase-lag model

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • 제36권1호
    • /
    • pp.19-26
    • /
    • 2024
  • Erigen's nonlocal thermoelasticity model is used to study the effect of viscosity on a micropolar thermoelastic solid in the context of the multi-phase-lag model. The harmonic wave analysis technique is employed to convert partial differential equations to ordinary differential equations to get the solution to the problem. The physical fields have been presented graphically for the nonlocal micropolar thermoelastic solid. Comparisons are made with the results of three theories different in the presence and absence of viscosity as well as the gravity field. Comparisons are made with the results of three theories different for different values of the nonlocal parameter. Numerical computations are carried out with the help of Matlab software.

Disturbance due to internal heat source in thermoelastic solid using dual phase lag model

  • Ailawalia, Praveen;Singla, Amit
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.341-354
    • /
    • 2015
  • The dual-phase lag heat transfer model is employed to study the problem of isotropic generalized thermoelastic medium with internal heat source. The normal mode analysis is used to obtain the exact expressions for displacement components, force stress and temperature distribution. The variations of the considered variables through the horizontal distance are illustrated graphically. The results are discussed and depicted graphically.

A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field

  • Said, Samia M.
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.159-166
    • /
    • 2022
  • The model of two-dimensional plane waves is analyzed in a micropolar-thermoelastic solid with microtemperatures in the context of the three-phase-lag model, dual-phase-lag model, and the Green-Naghdi theory of type III. Harmonic wave analysis is used to hold the solution to the problem. Numerical results of the physical fields are visualized to show the effects of the gravity field, magnetic field, and viscosity. The expression for the field variables is obtained generally and represented graphically for a particular medium.