• Title/Summary/Keyword: thermoelastic analysis

Search Result 137, Processing Time 0.025 seconds

Transient Thermoelnstic Analysis of Disk Brakes Using Finite Element Method (유한요소법을 이용한 디스크 브레이크의 과도기 열탄성 해석)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In;Cha, Hee-Bum;Kang, Min-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.160-167
    • /
    • 2002
  • The transient thermoelastic analysis of automotive disk brakes with frictional contact is performed by using the finite element method. To analyze the thermoelastic behaviors occurring in disk brakes, the coupled heat conduction and elastic equations are solved. The fully implicit transient scheme is used to improve the computation accuracy at every time step. The numerical results of the thermoelastic behaviors are obtained during the repeated braking condition. The computational results show that the thermoelastic instability(TEI) phenomenon(the growth of non-uniformities in contact pressure) occurs in disk brakes. Also, the effect of material properties on the thermoelastic behaviors is investigated to facilitate the conceptual design of the brake system.

An lnvestigation of the thermoelastic Behavior in Short Fiber Reinforced Composite Materials (단섬유 보강 복합재료에서의 열탄성 거동에 관한 해석)

  • 김홍건
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.89-95
    • /
    • 1997
  • A simulation to investigate the thermal behavior in short fiber or whisker reinforced composite materials has been performed for the application to the thermoelastic stress analysis using Finite Element Method (FEM). To obtain the internal field quantities of composite material, the procedure of micromechanical modeling and the principle of virtual work were implemented. For the numerical illustration, an aligned axisymmetric single fiber model has been employed to assess field quantities. It was found that the proposed simulation methodology for thermoelastic stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical thermoelastic behavior.

  • PDF

Transient Thermoelastic Analysis and 3 Dimensional Stress Analysis of Carbon/Carbon Brake Disks (탄소/탄소 브레이크 디스크의 과도기 열탄성 해석과 3차원 응력해석)

  • 오세희;유재석;김천곤;홍창선;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.147-152
    • /
    • 2000
  • This paper presents the thermoelastic analysis and 3-D failure analysis of the carbon/carbon brake disk. The mechanical properties of the carbon/carbon brake disk were measured for both in-plane and out of plane directions. The mechanical properties were used as the input of the thermoelastic analysis and 3-D stress analysis for the brake disk. The gap between rotor clip and clip retainer was an important parameter in the loading transfer mechanism of the rotor. The change of gap was considered separating the mechanical deformation and thermal deformation. Because the rotor clip and clip retainers were not contacted, the clip retainers and rivets were excluded from the rotor analysis model. The disk was modeled by using the cyclic symmetry condition and the contact problem between the rotor disk and rotor clip was considered. From the results of the 3-D stress analysis, the stress concentration at the key hole of the brake disk was confirmed.

  • PDF

Thermoelastic deformation and stress analysis of a FGM rectangular Plate (경사기능재료 사각 판의 열 탄성 변형과 응력 해석)

  • Kim,Gwi-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A Green's function approach is adopted for analyzing the thermoelastic deformation and stress analysis of a plate made of functionally graded materials (FGMs). The solution to the 3-dimensional steady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green’Às function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical examples are carried out and effects of material properties on thermoelastic behaviors are discussed.

TRANSIENT THERMOELASTIC STRESS ANALYSIS OF A THIN CIRCULAR PLATE DUE TO UNIFORM INTERNAL HEAT GENERATION

  • GAIKWAD, KISHOR R.;NANER, YOGESH U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2020
  • The present work aims to analyzed the transient thermoelastic stress analysis of a thin circular plate with uniform internal heat generation. Initially, the plate is characterized by a parabolic temperature distribution along the z-direction given by T = T0(r, z) and perfectly insulated at the ends z = 0 and z = h. For times t > 0, the surface r = a is subjected to convection heat transfer with convection coefficient hc and fluid temperature T. The integral transform method used to obtain the analytical solution for temperature, displacement, and thermal stresses. The associated thermoelastic field is analyzed by making use of the temperature and thermoelastic displacement potential function. Numerical results are carried out with the help of computational software PTC Mathcad Prime-3.1 and shown in figures.

Finite Element Analysis on the Thermoelastic Wear Behaviors for a High-Speed Disk Brake (고속용 디스크 브레이크의 열탄성 마멸거동에 관한 유한요소해석)

  • 이일권;김청균
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.291-296
    • /
    • 1999
  • This paper presents the results of thermoelastic wear behaviors in ventilated disk brakes for a high-speed automotive and train using the finite element method. The computed results show that the sinusoidal distortions due to non-uniform distributions of temperature profiles may lead to thermoelastic wears on the rubbing surface. This may decrease the service life of a disk brake and produce micro-cracks, noise and squeals between two rubbing surfaces.

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.

Rayleigh waves in nonlocal porous thermoelastic layer with Green-Lindsay model

  • Ismail Haque;Siddhartha Biswas
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • The paper deals with the propagation of Rayleigh waves in a nonlocal thermoelastic isotropic layer which is lying over a nonlocal thermoelastic isotropic half-space under the purview of Green-Lindsay model and Eringen's nonlocal elasticity in the presence of voids. The normal mode analysis is employed to the considered equations to obtain vector matrix differential equation which is then solved by eigenvalue approach. The frequency equation of Rayleigh waves is derived and different particular cases are also deduced. The effects of voids and nonlocality on different characteristics of Rayleigh waves are presented graphically.

Analysis on Thermoelastic Stress in the Cantilever Beam by Lock-in Thermography

  • Kang, K.S.;Choi, M.Y.;Park, J.H.;Kim, W.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2008
  • In this paper, effects of thermoelastic stress by using lock-in thermography was measured in the cantilever beam. In experiment, a circular holed plate was applied to analyze variation of transient stress under the condition of repeated cyclic loading. And the finite element modal analysis as computational work was performed. According to the surface temperature obtained from infrared thermography, the stress of the nearby hole was predicted based on thermoelastic equation. As results, each stress distributions between 2nd and 3rd vibration mode were qualitatively and quantitatively investigated, respectively. Also, dynamic stress concentration factors according to the change of vibration amplitude were estimated for the resonance frequency.

Effect of relaxation time on generalized double porosity thermoelastic medium with diffusion

  • Mohamed I.A. Othman;Nehal T. Mansour
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.475-482
    • /
    • 2023
  • This paper studies the effect of the relaxation time on a two-dimensional thermoelastic medium which has a doubly porous structure in the presence of diffusion and gravity. The normal mode analysis is used to obtain the analytic expressions of the physical quantities, which we take the solution form in the exponential image. We have discussed a homogeneous thermoelastic half-space with double porosity with the effect of diffusion and gravity. The equations of generalized thermoelastic material with double porosity structure with one relaxation time have been developed. Moreover, the expressions of many physical quantities are explained. The general solutions, under specific boundary conditions of the problem, were found in some detail. In addition, numerical results are computed.