Browse > Article
http://dx.doi.org/10.5012/jkcs.2021.65.6.419

The Theoretical Calculations of Kinetic and Thermodynamics Parameters and Anharmonic Correction for the Related Reactions of NO3  

Yu, Hongjing (Dalian Maritime University)
Liu, Yancheng (Dalian Maritime University)
Xia, Wenwen (Dalian Maritime University)
Wang, Li (Dalian Maritime University)
Jiang, Meiyi (Dalian Maritime University)
Hu, Wenye (Shanghai Maritime University)
Yao, Li (Shanghai Maritime University)
Publication Information
Abstract
According to the transition state (TS) theory, Gaussian software and Yao and Lin (YL) method, the thermodynamics and kinetic data respectively were calculated, and anharmonic effect was considered for related reactions of NO3. The methods of calculating and fitting kinetic and thermodynamics parameters were provided by least square method and related equations in this paper. Notably, the fitted E of Arrhenius equation was close to the calculated barrier of related reaction by QCISD(T) method. Therefore, the kinetic fitting result can well express the physical meaning of E in Arrhenius equation. Besides, the conversion process and the reaction mechanism of NO3 were researched. For NO3, it seemed that its instability results from its easy reaction with other substances rather than the decompose reaction of itself.
Keywords
$NO_3$; Transition state theory; Kinetic parameters; Thermodynamics parameters; Anharmonic effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hao, Y.; Pan, X.; Song, L.; Ding, Y.; Xia, W.; Wang, S.; Yu, H.; Kang, L.; Yao, L. Can. J. Chem. 2017, 95, 1064.   DOI
2 Biczysko, M.; Panek, P.; Scalmani, G.; Bloino, J.; Barone, V. J. Chem. Theory Comput. 2010, 6, 2115.   DOI
3 Laidler, K. J. J. Chem. Educ. 1984, 61, 494.   DOI
4 Chemkin-Pro Reaction Design, San Diego 2010.
5 DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. JPL Publication. 1997.
6 Johnston, H. S.; Cantrell, C. A.; Calvert, J. G. J. Geophys. Res. 1986, 91, 5159.   DOI
7 Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. J. Phys. Chem. A. 1985, 89, 4848.   DOI
8 GRI3.0: Gregory P. Smith; David M. Golden; Michael Frenklach; Nigel W. Moriarty; Boris Eiteneer; Mikhail Goldenberg; C. Thomas Bowman; Ronald K. Hanson; Soonho Song; William C. Gardiner; Jr.; Vitali V. Lissianski; Qin, Z. http://combustion.berkeley.edu/gri-mech/.
9 Yao, L.; Lin, S. H. Sci. China Ser. B. 2008, 51, 1146.   DOI
10 Casquero-Vera, J. A.; Lyamani, H.; Titos, G.; Borras, E.; Olmo, F. J.; Alados-Arboledas, L. Sci. Total Environ. 2019, 646, 1117.   DOI
11 Carslaw, D. C.; Beevers, S. D. Atmos. Environ. 2004, 38, 3585.   DOI
12 Wang, Z.; Zhou, J.; Zhu, Y.; Wen, Z.; Liu, J.; Cen, K. Fuel Process. Technol. 2007, 88, 817.   DOI
13 Zhang, J.; Wang, H.; Xue, X.; Zhang, Y.; Cheng, X. Acta Chim. Sin. 2012, 70, 2543.   DOI
14 Zhao, R.; Gao, D.; Pan, X.; Xia, W.; Yu, H.; Yu, S.; Yao, L. Chem. Phys. Lett. 2018, 703, 97.   DOI
15 Mcbride, B. J.; Gordon, S. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications; NASA Ref. Publication: 1994.
16 Tang, J.; Hu, W.; Yang, J.; Wu, Y. Appl. Surf. Sci. 2007, 254, 1475.   DOI
17 Yao, L.; Mebel, A. M.; Lu, H. F.; Neusser, H. J.; Lin, S. H. J. Phys. Chem. A. 2007, 111, 6722.   DOI
18 Schmalz, F.; Kopp, W. A.; Kroger, L. C.; Leonhard, K. ACS Omega. 2020, 2242.
19 Yu, H.; Xia, W.; Song, L.; Ding, Y.; Hao, Y.; Kang, L.; Pan, X.; Yao, L. Acta. Phys.-Chim. Sin. 2017, 33, 2207.
20 Zhong, J. J.; Wang, W. W.; Li, Q.; Xia, W. W.; Shao, Y.; Yao, L.; Lin, S. H. J. Chin. Chem. Soc. 2015, 62, 582.   DOI
21 Wang, Z.; Cen, K.; Zhou, J.; Fan, J. Simultaneous Multipollutants Removal in Flue Gas by Ozone; Zhejiang University Press: Hangzhou, China. 2014.
22 Gao, L.; Li, C.; Zhang, J.; Du, X.; Zeng, G. Fuel 2018, 215, 30.   DOI
23 Schumann, U. Atmos. Environ. 1997, 31, 1723.   DOI
24 Ma, B.; Li, X.; Hu, Z.; Jian, S.; Zhang, P. J. Wuhan Univ. Technol. 2004, 26, 33.
25 Fenimore, C. P. Int. Symposium. Combust 1971, 13, 373.   DOI
26 Wang, D.; Xie, P.; Hu, R.; Qin, M.; Chen, H.; Duan, J.; Zhu, G.; Lu, X. J. Atmos. Environ. Optics. 2015, 10, 102.
27 Ma, Y. Chem. Bioeng. 2018, 35, 24.
28 Schlag, E. W.; Sandsmark, R. A. J. Chem. Phys. 1962, 37, 168.   DOI
29 Xing, L.; Wang, Z.; Truhlar, D. G. J. Am. Chem. Soc. 2019, 141, 18531.   DOI
30 Valiev, R. R.; Nasibullin, R. T.; Cherepanov, V. N.; Baryshnikov, G. V.; Sundholm, D.; Agren, H.; Minaev, B. F.; Kurten, T. Phys. Chem. Chem. Phys. 2020, 1.
31 Yao L.; Liu Y. L. Mod. Phys. Lett. B. 2008, 22, 3043.   DOI
32 Li, X.; Yao, X.; Shentu, J.; Sun, X.; Li, J.; Liu, M.; Xu, S. Chem. J. Chinese U. 2020, 41, 512.
33 Jiang, Y.; Xia, M.; Qin, S.; Chen, Z. Power System Engineering. 2005, 21, 25.
34 Yao, L.; He, R. X.; Mebel, A. M.; Lin, S. H. Chem. Phys. Lett. 2009, 470, 210.   DOI
35 Baer, T.; Hase, W. L. Unimolecular reaction dynamics: Theory and experiments; Oxford University Press: New York, U.S.A. 1996.
36 Ahlam N. Al-Rawi; Abdelkader Kara; Rahman, T. S. Surf. Sci. 2000, 446, 17.   DOI
37 Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data. 1986, 15, 1087.   DOI
38 Liu, C.; Li, Z.; Zhou, C.; Li, X. J. Comput. Chem. 2008, 30, 1007.   DOI
39 Schott, G.; Davidson, N. J. Am. Chem. Soc. 1958, 80, 1841.   DOI
40 Biggs, P.; Canosa-Mas, C. E.; Monks, P. S.; Wayne, R. P.; Benter, T.; Schindler, R. N. Int. J. Chem. Kinet. 1993, 25, 805.   DOI
41 Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063.   DOI
42 Hjorth, J.; Notholt, J.; Restelli, G. Int. J. Chem. Kinet. 1992, 24, 51.   DOI
43 Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell: Oxford, 1990.
44 Yu, H.; Xia, W.; Chen, Y.; Yao, L. J Chin Chem Soc. 2021, 1.
45 Chase, M. W. NIST-JANAF Themochemical Tables, Fourth Edition. J. Phys. Chem. Ref. Data. 1998. http://www.nist.gov/data.
46 Narayanaswamy, K.; Blanquart, G.; Pitsch, H. Combust. Flame. 2010, 157, 1879.   DOI
47 Yin, P.; Chen, X.; Zhang, J.; Ju, G.; Li, C.; Xin, X. Acta. Chim. Sinica. 2000, 58, 1365.   DOI
48 Glarborg, P.; Miller, J. A.; Ruscic, B.; Klippenstein, S. J. Energy Combust. Sci. 2018, 67, 31.   DOI
49 Yu, H.; Xia, W.; Liu, Y.; Yao, L. J. Korean Chem. Soc. 2021, 65, 185.   DOI
50 Zhao, Y.; Truhlar, D. G. Theor. Chem. Account. 2008, 120, 215.   DOI
51 Donovan, R. J.; Husain, D. Chem. Rev. 1970, 70, 489.   DOI
52 Forst, W. Chem. Rev. 1971, 71, 339.   DOI
53 Forst, W. Theory of unimolecular reactions; Academic Press: New York, U.S.A. 1973.
54 Eyring, H.; Lin, S. H.; Lin, S. M. Basic Chemical Kinetics; A Wiley-interscience Publication: New York, U.S.A. 1980.
55 John B.; Kieran P. S.; John M. S.; Felix G.; Henry J. C. J. Phys. Chem. A 2016, 120, 7192.   DOI
56 DFT-CCSDTF12. https://rmg.mit.edu/.