• Title/Summary/Keyword: thermodynamic solution

Search Result 310, Processing Time 0.028 seconds

Thermodynamic Phase Equilibrium of Aqueous Fe-Ni-Cu-S-H2O Solution for Fe-Ni-Cu Alloy Plating (Fe-Ni-Cu 합금도금을 위한 Fe-Ni-Cu-S-H2O 용액의 열역학적 상의 안정도)

  • Baek, Yeol;Han, Sang-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.123.2-123.2
    • /
    • 2017
  • Fe-Ni-Cu 합금 전주를 위하여 황화물 용액에의 상의 열역학적 안정도를 작성하고 전주 조건을 선정하였다. $Fe-Ni-Cu-S-H_2O$ 용액의 열역학적 상의 안정도를 전산모사하기 위한 프로그램은 C#으로 작성하였다. JANAF 자료를 근거한 적정 전주 조건은 $130mA/cm^2$, $50{\sim}55^{\circ}C$, pH 2.4 이었다. XRF을 이용한 Fe-Ni-Cu의 합금 도막의 평균 조성은 Fe-42Ni-1Cu [wt.%] 이었다, 전류밀도가 낮아질수록 Ni과 Cu량은 증가하였다. 구리 농도가 증가하면 표면조도는 60 nm로 변화하였다.

  • PDF

4-stroke 디젤엔진의 성능예측에 관한 연구

  • 오태식;오세종;양재신
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.58-68
    • /
    • 1982
  • It is well known to diesel engineers that the heat release pattern is one of the most important factors affecting engine performance. Thorough research in heat release pattern has materially helped the progress in high-speed diesel engine development . This paper is based on the research conducted at KAIST and Daewoo Heavy Industry last year. The purpose of this paper is to determine the heat release pattern in combustion chamber of MAN M type, the famous low-noise engine. Thermodynamic cycle simulation was performed using Whitehous-Way's heat release pattern with modified coefficients and Annand's heat transfer model. Instantaneous temperature and pressure of gas in cylinder could be determined by the numerical solution of simultaneous equation of mass conservation, equation of energy conservation, and state equation of ideal gas. Calculated results were compared with measured values in some details emphasizing upon the factors affecting rate of heat release. The agreement was fairly good and revealed why M type should have lower burning velocity at the early part of combustion in spite of high injection rate. Additional results by parametric studies were given in relation to fuel injection conditions for further application to engine development.

  • PDF

Studies on the Natural Dyes(10) -Dyeing properties of safflower yellow for silk fibers- (天然染料에 관한 硏究(10) -홍화 황색소의 견섬유에 대한 염색성-)

  • Cho, Kyung Rae
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.10-18
    • /
    • 1997
  • In order to study the properties of safflower yellow colors, thermodynamic parameters and dyeing properties on the silk in several dyeing conditions were investigated. The uv-visible spectra of safflower yellow colors in several solvents show hypsochromic shift with the polarity of solvent but bathochromic shift with increasing acidity of solution. The apparent diffusion coefficients and standard affinities of dyeing increased with the increase of dyeing temperature. The standard heat of dyeing(${\Delta}H^0$), entropy change(${\Delta}S^0$) and activation energy($E_{act}$) were calculated to be - 1.144kcal/mol, -7.498(5$0^{\circ}C$)~-3.804(9$0^{\circ}C$)cal/molㆍdeg and 0.123kcal/mol, respectively. The concentration of safflower yellow colors in the silk fiber increased with dyeing temperature, time, concentration of colors and acidity of initial dyebath. Silk fabrics were dyed bright yellow by pre-mordanting with tin chloride. Lightfastness of silk fabrics pre-mordanted by tin chloride was not excellent.

  • PDF

Analysis of Oxide Film on X65-Line Pile Steel Formed in Hydrogen Induced Cracking Environment by Dynamic Nano-indentation Method (동적 나노압칩법을 이용한 수소유기균열분위기에서 생성된 X65-석유수소용 강관의 산화막 분석)

  • O, Se-Beom;Gang, Bo-Gyeong;Lee, Sang-Heon;Choe, Yong;Kim, Wan-Geun;Go, Seong-Ung;Jeong, Hwan-Gyo;Lee, Chang-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.155-155
    • /
    • 2014
  • The oxide film was formed in hydrogen induced cracking (HIC) environment by potentio-dynamic method. Corrosion potentials and rates of the X-65 and X-80 line pipe steels were -0.3495 $V_{SHE}$, $2.833{\times}10^{-3}A/cm^2$ and 0.2716 $V_{SHE}$ and $2.533{\times}10^{-3}A/cm^2$, respectively. Surface composition analysis of the oxide film contained sulfur. Thermodynamic analysis of the HIC solution chemistry suggested that the oxide phase consisted of iron sulfate. Dynamic nano-indentation method applied to determine nano-hardnesses of the oxide film and base metal hardness.

  • PDF

Thermodynamic Characteristics of Blends Involving Polycarbonates and Various Polymethacrylates (폴리카보네이트들과 다양한 종류의 폴리메타아크릴레이트 블렌드의 열역학적 특성에 관한 연구)

  • 김주헌;박동식;김창근
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.682-689
    • /
    • 2000
  • The information related to the interaction energy between repeat units is essential for the production of useful polymer blends via molecular structure design. Based on the interaction energies obtained here, a method for the fabrication of miscible blend was suggested. An investigation related to the equilibrium phase behavior of polymer blends of various polycarbonates with various polymethacrylates was performed and then based on the obtained interaction information miscible polymer blends were produced by controling molecular structure of polymer. Binary interaction energies between repeat units were calculated from the lower critical solution temperature-type phase boundary using an equation of state combined with binary interaction model.

  • PDF

A Thermodynamic Study on the Binding of Cobalt Ion with Myelin Basic Protein

  • Behbehani, G. Rezaei;Saboury, A.A.;Baghery, A. Fallah
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.736-740
    • /
    • 2008
  • The interaction of myelin basic protein (MBP) from bovine central nervous system with divalent calcium ion was studied by isothermal titration calorimetry at 27 ${^{\circ}C}$ in aqueous solution. The extended solvation model was used to reproduce the enthalpies of $Co^{2+}$-MBP interaction over the whole $Co^{2+}$ concentrations. The solvation parameters recovered from the solvation model were attributed to the structural change of MBP due to the metal ion interaction. It was found that there is a set of three identical and noninteracting binding sites for $Co^{2+}$ ions. The association equilibrium constant is 0.015 ${\mu}M^{-1}$. The molar enthalpy of binding is $\Delta$H = −14.60 kJ $mol^{-1}$.

Thermodynamic Studies on the Interaction of Copper Ions with Carbonic Anhydrase

  • Sarraf, N.S.;Mamaghani-Rad, S.;Karbassi, F.;Saboury, A. A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1051-1056
    • /
    • 2005
  • The interaction of bovine carbonic anhydrase II with copper ions was studied by isothermal titration microcalorimetry, circular dichroism, UV spectrophotometry and temperature scanning spectrophotometry methods at 27 ${^{\circ}C}$ in Tris buffer solution at pH = 7.5. It was indicated that there are three non-identical different binding sites on carbonic anhydrase for $Cu^{2+}$. The binding of copper ions is exothermic and can induce some minor changes in the secondary and tertiary structure of the enzyme, which does not unfold it, but can result in a decrease in both activity and stability of the enzyme.

A simple procedure to simulate the failure evolution

  • Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.601-612
    • /
    • 1996
  • To simulate the large-scale failure evolution with current computational facilities, a simple approach, that catches the essential feature of failure mechanisms, must be available so that the routine use of failure analysis is feasible. Based on the previous research results, a simple analysis procedure is described in this paper for failure simulation. In this procedure, the evolution of localization is represented by a moving surface of discontinuity, and the transition between continuous and discontinuous failure modes are described via the moving jump forms of conservation laws. As a result, local plasticity and damage models, that are formulated based on thermodynamic restrictions, are still valid without invoking higher order terms, and simple integration schemes can be designed for the rate forms of constitutive models. To resolve localized large deformations and subsequent cracking, an efficient structural solution scheme is given for Static and dynamic problems.

Vanadyl Binary Schiff Base Complexes Containing N2O2 Coordination Sphere: Synthesis, Ab Initio Calculations and Thermodynamic Properties

  • Asadi, Mozaffar;Ghatee, Mohammad Hadi;Torabi, Susan;Mohammadi, Khosro;Moosavi, Fatemeh
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • Some vanadyl complexes were synthesized by treating a methanolic solution of the appropriate Schiff base ligand and one equivalent of $VO(SO_4)_2$ to yield [($VOL_2^{1-14}$)](L=Salicylaldehyde's derivatives, Schemes 1, 2). These oxovanadium (IV) complexes were characterized based on their FT-IR, UV-Vis spectroscopy and elemental analysis. The IR spectra suggest that coordination takes place through azomethine nitrogen and phenolate oxygen. In addition, the formation constants of the oxovanadium (IV) binary complexes were determined in methanolic medium. The ab initio calculations were also carried out to determine the structural and the geometrical properties of one of the complexes and its calculated vibrational frequencies were investigated.

Atom Transfer Radical Polymerization of Hexadecyl Acrylate Using CuSCN as the Catalyst

  • Xu, Wenjian;Zhu, Xiulin;Cheng, Zhenping;Chen, Jianying;Lu, Jianmei
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • The atom transfer radical polymerization (ATRP) of hexadecyl acrylate (HDA) was carried out in Ν,Ν-dimethylformamide (DMF) in the presence of CuSCN/Ν,Ν,Ν′,Ν"Ν"-pentamethyldiethylenetriamine (PMDETA). The results indicate that the polymerization is well-controlled: a linear increase of molecular weights occurs with respect to conversion and the polydispersities are relatively low. In particular, the use of CuSCN as the catalyst resulted in faster polymerization rates for hexadecyl acrylate than did those using either CuBr or CuCl; the polydis-persity, however, was larger than those obtained in the cases when CuBr and CuCl were used. In addition, we report the thermodynamic data and activation parameters for the solution ATRP of hexadecyl acrylate.