DOI QR코드

DOI QR Code

Thermodynamic Studies on the Interaction of Copper Ions with Carbonic Anhydrase

  • Sarraf, N.S. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Mamaghani-Rad, S. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Karbassi, F. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Saboury, A. A. (Institute of Biochemistry and Biophysics, University of Tehran)
  • Published : 2005.07.20

Abstract

The interaction of bovine carbonic anhydrase II with copper ions was studied by isothermal titration microcalorimetry, circular dichroism, UV spectrophotometry and temperature scanning spectrophotometry methods at 27 ${^{\circ}C}$ in Tris buffer solution at pH = 7.5. It was indicated that there are three non-identical different binding sites on carbonic anhydrase for $Cu^{2+}$. The binding of copper ions is exothermic and can induce some minor changes in the secondary and tertiary structure of the enzyme, which does not unfold it, but can result in a decrease in both activity and stability of the enzyme.

Keywords

References

  1. Meldrum, N. U.; Roughton, F. J. W. J. Physiol. 1993, 83,113-141
  2. Stadie, W. C.; O'Brien, H. J. Biol. Chem. 1933, 103, 521-529
  3. Supuran, C. T.; Scozzafava, A.; Casini, A. Med. Res. Rev. 2003, 23, 146-189 https://doi.org/10.1002/med.10025
  4. Supuran, C. T.; Scozzafava, A. Exp. Opin. Ther. Patent. 2000, 10, 575-600 https://doi.org/10.1517/13543776.10.5.575
  5. Coleman, J. E. J. Biol. Chem. 1967, 242, 5212-5219
  6. Lindskog, S.; Coleman, J. E. Proc. Natl. Acad. Sci. USA 1973, 70, 2505-2508
  7. Sly, W. S.; Peiyi, H. Y. Ann. Rev. Biochem. 1995, 64, 375-401 https://doi.org/10.1146/annurev.bi.64.070195.002111
  8. Pocker, Y.; Stone, J. T. Biochemistry 1967, 6, 668-678 https://doi.org/10.1021/bi00855a005
  9. Supuran, C. T.; Conroy, C. W.; Maren, T. H. Proteins: Struct. Funct. Genet. 1997, 27, 272-278 https://doi.org/10.1002/(SICI)1097-0134(199702)27:2<272::AID-PROT12>3.0.CO;2-J
  10. Lindskog, S.; Nyman, P. O. Biochim. Biophys. Acta 1964, 85, 462-474
  11. Kiefer, L. L.; Krebs, J. F.; Paterno, S. A.; Fierke, C. A. Biochemistry 1933, 32, 9896-9900 https://doi.org/10.1021/bi00089a004
  12. Hakansson, K.; Carlsson, M.; Svensson, L. A.; Liljas, A. J. Mol. Biol. 1992, 227, 1192-1204 https://doi.org/10.1016/0022-2836(92)90531-N
  13. Hakansson, K.; Wehnert, A.; Liljas, A. Acta Crystallogr. 1994, D50, 93-100
  14. DiTusa, C. A.; Christiansen, T.; McCall, K. A.; Fierke, C. A.; Toone, E. J. Biochemistry 2001, 40, 5338-5344 https://doi.org/10.1021/bi001731e
  15. Henkens, R. W.; Watt, G. D.; Sturtevant, J. M. Biochemistry 1969, 5, 1874-1878
  16. Linskog, S. Zinc Enzymes; Spiro, T. G., Ed.; Wiley-Interscience: New York, 1983; pp 77-121
  17. Kogut, K. A.; Rewlett, R. S. J. Biol. Chem. 1987, 262, 16417- 16424
  18. Cox, J. D.; Hunt, J. A.; Compher, K. M.; Fierke, C. A.; Christianson, D. W. Biochemistry 2000, 39, 13687-13694 https://doi.org/10.1021/bi001649j
  19. DiTusa, C. A.; McCall, K. A.; Christiansen, T.; Mahapatro, M.; Fierke, C. A.; Toone E. J. Biochemistry 2001, 40, 5345-5351 https://doi.org/10.1021/bi0017327
  20. Thompson, R. B.; Maliwal, B. P.; Fierke, C. A. Anal. Biochem. 1999, 267, 185-195 https://doi.org/10.1006/abio.1998.2991
  21. Abul Fazal, M. D.; Roy, B. C.; Sun, S.; Mallik, S.; Rodgers, K. R. J. Am. Chem. Soc. 2001, 123, 6283-6290 https://doi.org/10.1021/ja003193z
  22. Saboury, A. A.; Sarraf, N. S.; Dahot, M. H. Jour. Chem. Soc. Pak. 2004, 26, 69-72
  23. Sarraf, N. S.; Saboury, A. A.; Moosavi-Movahedi, A. A. J. Enz. Inhib. Med. Chem. 2002, 17, 203-207 https://doi.org/10.1080/14756360290034316
  24. Wong, K. P.; Hamlin, L. M. Biochemistry 1974, 13, 2678-2682 https://doi.org/10.1021/bi00710a003
  25. Schippers, P. H.; Dekkers, H. P. J. M. Anal. Chem. 1981, 53, 778- 788 https://doi.org/10.1021/ac00229a008
  26. Takakuwa, T.; Konno, T.; Meguro, H. Anal. Sci. 1985, 1, 215-218 https://doi.org/10.2116/analsci.1.215
  27. Protasevich, I.; Ranjbar, B.; Labachov, V.; Makarov, A.; Gilli, R.; Briand, C.; Lafitte, D.; Haiech, J. Biochemistry 1997, 36, 2017-2024 https://doi.org/10.1021/bi962538g
  28. Yang, J. T.; Wu, C. S. C.; Martinez, H. M. Methods in Enzymology 1986, 130, 208-269 https://doi.org/10.1016/0076-6879(86)30013-2
  29. Marthasarathy, P.; Johnson, W. C., Jr. Anal. Biochem. 1987, 167, 76-85 https://doi.org/10.1016/0003-2697(87)90135-7
  30. Pace, C. N.; Shiley, B. A.; Thomson, J. A. Protein Structure- A Practical Approach; Creighton, T. E., Ed.; IRL Press: Oxford, 1990; pp 311-330
  31. Moosavi-Movahedi, A. A.; Nazari, K.; Saboury, A. A. Coll. Surf. B: Biointerfaces 1997, 9, 123-130 https://doi.org/10.1016/S0927-7765(97)00016-7
  32. Saboury, A. A.; Karbassi, F. Thermochim. Acta 2000, 362, 121-129 https://doi.org/10.1016/S0040-6031(00)00579-7
  33. Kelly, S. M.; Price, N. C. Biochem. Biophys. Acta 1997, 1338, 161-185
  34. Almstedt, K.; Lundqvist, M.; Carlsson, J.; Karlsson, M.; Persson, B.; Jonsson, B.; Carlsson, U.; Hammarstrom, P. J. Mol. Biol. 2004, 342, 619-633 https://doi.org/10.1016/j.jmb.2004.07.024
  35. Hammarstrom, P.; Persson, M.; Freskgard, P.; Carlsson, U. J. Biol. Chem. 1999, 274, 32897-32903 https://doi.org/10.1074/jbc.274.46.32897
  36. Saboury, A. A. J. Therm. Anal. Cal. 2004, 77, 997-1004 https://doi.org/10.1023/B:JTAN.0000041675.76664.07
  37. Saboury, A. A.; Bagheri, S.; Ataie, G.; Amanlou, M.; Moosavi- Movahedi, A. A.; Hakimelahi, G. H.; Cristalli, G.; Namaki, S. Chem. Pharm. Bull. 2004, 52, 1179-1182 https://doi.org/10.1248/cpb.52.1179
  38. Hill, A. V. J. Physiol. 1910, 40, IV-VII
  39. Moosavi-Movahedi, A. A.; Houseindokht, M. R. Int. J. Biol. Macromol. 1994, 16, 77 https://doi.org/10.1016/0141-8130(94)90018-3
  40. James, M. L.; Smith, G. M.; Wolford, J. C. Applied Numerical Methods for Digital Computer, 3rd ed.; Harper and Row Publisher: New York, 1985

Cited by

  1. A Thermodynamic Study of Zinc Ion Interaction with Bovine Carbonic Anhydrase II at Different Temperatures vol.40, pp.5, 2011, https://doi.org/10.1007/s10953-011-9686-2
  2. Thermodynamic Study of Myelin Basic Protein upon Interaction with [Hg2+] Using Extension Solvation Model vol.28, pp.5, 2010, https://doi.org/10.1002/cjoc.201090136
  3. A Calorimetric Study on the Interaction of Zinc and Cadmium Ions with Jack Bean Urease vol.29, pp.3, 2011, https://doi.org/10.1002/cjoc.201190102
  4. Application of an extended solvation theory to study on the binding of magnesium ion with myelin basic protein vol.93, pp.2, 2008, https://doi.org/10.1007/s10973-007-8674-7
  5. A thermodynamic study of nickel ion interaction with bovine carbonic anhydrase II molecule vol.100, pp.1, 2010, https://doi.org/10.1007/s10973-009-0012-9
  6. A Thermodynamic Study on the Binding of Cobalt Ion with Myelin Basic Protein vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.736
  7. A Thermodynamic Study on the Binding of Cobalt Ion with Myelin Basic Protein vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.736
  8. 확장용매화이론을 사용한 마그네슘 및 코발트이온과 인간성장호르몬과의 상호작용에 대한 열역학적 연구 vol.52, pp.6, 2008, https://doi.org/10.5012/jkcs.2008.52.6.608
  9. Probing the Interaction of Newly Synthesized Pt(II) Complex on Human Serum Albumin Using Competitive Binding Site Markers vol.29, pp.4, 2005, https://doi.org/10.1007/s10895-019-02383-3