• 제목/요약/키워드: thermodynamic model

Search Result 529, Processing Time 0.028 seconds

Hydrogeochemical and Environmental Isotope Study of Groundwaters in the Pungki Area (풍기 지역 지하수의 수리지구화학 및 환경동위원소 특성 연구)

  • 윤성택;채기탁;고용권;김상렬;최병영;이병호;김성용
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.177-191
    • /
    • 1998
  • For various kinds of waters including surface water, shallow groundwater (<70 m deep) and deep groundwater (500∼810 m deep) from the Pungki area, an integrated study based on hydrochemical, multivariate statistical, thermodynamic, environmental isotopic (tritium, oxygen-hydrogen, carbon and sulfur), and mass-balance approaches was attempted to elucidate the hydrogeochemical and hydrologic characteristics of the groundwater system in the gneiss area. Shallow groundwaters are typified as the 'Ca-HCO$_3$'type with higher concentrations of Ca, Mg, SO$_4$and NO$_3$, whereas deep groundwaters are the 'Na-HCO$_3$'type with elevated concentrations of Na, Ba, Li, H$_2$S, F and Cl and are supersaturated with respect to calcite. The waters in the area are largely classified into two groups: 1) surface waters and most of shallow groundwaters, and 2) deep groundwaters and one sample of shallow groundwater. Seasonal compositional variations are recognized for the former. Multivariate statistical analysis indicates that three factors may explain about 86% of the compositional variations observed in deep groundwaters. These are: 1) plagioclase dissolution and calcite precipitation, 2) sulfate reduction, and 3) acid hydrolysis of hydroxyl-bearing minerals(mainly mica). By combining with results of thermodynamic calculation, four appropriate models of water/ rock interaction, each showing the dissolution of plagioclase, kaolinite and micas and the precipitation of calcite, illite, laumontite, chlorite and smectite, are proposed by mass balance modelling in order to explain the water quality of deep groundwaters. Oxygen-hydrogen isotope data indicate that deep groundwaters were originated from a local meteoric water recharged from distant, topograpically high mountainous region and underwent larger degrees of water/rock interaction during the regional deep circulation, whereas the shallow groundwaters were recharged from nearby, topograpically low region. Tritium data show that the recharge time was the pre-thermonuclear age for deep groundwaters (<0.2 TU) but the post-thermonuclear age for shallow groundwaters (5.66∼7.79 TU). The $\delta$$\^$34/S values of dissolved sulfate indicate that high amounts of dissolved H$_2$S (up to 3.9 mg/1), a characteristic of deep groundwaters in this area, might be derived from the reduction of sulfate. The $\delta$$\^$13/C values of dissolved carbonates are controlled by not only the dissolution of carbonate minerals by dissolved soil CO$_2$(for shallow groundwaters) but also the reprecipitation of calcite (for deep groundwaters). An integrated model of the origin, flow and chemical evolution for the groundwaters in this area is proposed in this study.

  • PDF

Numerical Investigation of Exhaust Gas Recirculation Effect under Boost Pressure Condition on Homogeneous Charge Compression Autoignition (HCCI엔진의 과급조건에서 EGR영향에 대한 수치해석적 연구)

  • Oh, Chung Hwan;Jamsran, Narankhuu;Lim, Ock Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.451-464
    • /
    • 2014
  • This study used numerical methods to investigates investigate the exhaust gas recirculation (EGR) effect under the condition of boost pressure condition on a homogeneous charge compression ignition (HCCI) combustion engine using numerical methods. The detailed chemical-kinetic mechanisms and thermodynamic parameters for n-heptane, iso-octane, and PRF50 from the Lawrence Livermore National Laboratory (LLNL) are were used for this study. The combustion phase affects the efficiency and power. To exclude these effects, this study decided to maintain a 50 burn point (CA50) at 5 CA after top dead center aTDC. The results showed that the EGR increased, but the low temperature heat release (LTHR), negative temperature coefficient (NTC), and high temperature heat release (HTHR) were weakened due by theto effect of the O2 reduction. The combined EGR and boost pressure enhanced the autoignition reactivity, Hhence, the LTHR, NTC, and HTHR were enhanced, and the heat-release rate was increased. also In addition, EGR decraeased the indicated mean effective pressure (IMEP), but the combined EGR and boost pressure increased the IMEP. As a results, combining the ed EGR and boost pressure was effective to at increase increasing the IMEP and maintaining the a low PRR.

Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process (열화학 황-요오드 수소 생산 공정의 요오드 결정화기 설계를 위한 결정 침강 모델링)

  • Park, Byung Heung;Jeong, Seong-Uk;Kang, Jeong Won
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.768-774
    • /
    • 2014
  • SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of $I_2$ from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an $I_2$ removal process. In this work, $I_2$ particle sinking behavior was modeled to secure basic data for designing an $I_2$ crystallizer applied to $I_2$-saturated $HI_x$ solutions. The composition of $HI_x$ solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to $I_2$ particle radius and temperature. The terminal velocity of an $I_2$ particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to $50^{\circ}C$) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

A Study on the Improvement for Cycle Efficiency of Closed-type OTEC (폐쇄형 해양온도차발전 사이클 효율 향상 방안)

  • Lee, Ho-Saeng;Kim, Hyeon-Ju;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A study on the improvement for cycle efficiency of closed-type ocean thermal energy conversion (OTEC) was studied to obtain the basic data for the optimal design of cycle. For that, OTEC cycle with a generator, a reheater and a multi-turbine was simulated and analyzed. The basic thermodynamic model for OTEC is Rankine cycle and the surface seawater of $26^{\circ}C$ and deep seawater of $5^{\circ}C$ were used for the heat source of evaporator and condenser, respectively. Ammonia is used as the working fluid. The cycle efficiency increased when generator is added with 0.9 generator effectiveness. When the reheater and multi-turbine are applied in the basic cycle, the cycle efficiency showed 3.14% and the capacity of heat exchanger decreased for same total cycle power. For the OTEC cycle with the generator, the reheater and the multi-turbine showed the highest cycle efficiency and increased the efficiency by more than 6.5% comparing with the basic OTEC cycle.

Study on of Process Parameters for Adsorption of Reactive Orange 16 Dye by Activated Carbon (활성탄에 의한 Reactive Orange 16 염료 흡착에 대한 공정 파라미터 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.667-674
    • /
    • 2020
  • The adsorption of reactive orange 16 (RO 16) dye by activated carbon was investigated using the amount of adsorbent, pH, initial concentration, contact time and temperature as adsorption variables. The investigated process parameters were separation coefficient, rate constant, rate controlling step, activation energy, enthalpy, entropy, and free energy. The adsorption of RO 16 was the highest at pH 3 due to the electrostatic attraction between the cations (H+) on the surface of the activated carbon and the sulfonate ions and hydroxy ions possessed by RO 16. Isotherm data were fitted into Langmuir, Freundlich and Temkin isotherm models by applying the evaluated separation factor of Langmuir (RL=0.459~0.491) and Freundlich (1/n=0.398~0.441). Therefore, the adsorption operation of RO 16 by activated carbon was confirmed as an appropriate removal method. Temkin's adsorption energy indicated that this adsorption process was physical adsorption. The adsorption kinetics studies showed that the adsorption of RO 16 follows the pseudo-second-order kinetic model and that the rate controlling step in the adsorption process was the intraparticle diffusion step. The positive enthalpy change indicated an endothermic process. The negative Gibbs free energy change decreased in the order of -3.16 <-11.60 <-14.01 kJ/mol as the temperature increased. Therefore, it was shown that the spontaneity of the adsorption process of RO 16 increases with increasing temperature.

Prediction of Thermal Behavior of Automotive LNG Fuel Tank (LNG 자동차 연료 탱크의 열적 거동에 대한 예측)

  • NamKoong, Kyu-Won;Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.875-883
    • /
    • 2010
  • The thermal performance of LNG fuel tanks of vehicles is determined by the time for non-venting storage of fuel and the amount of fuel supplied to the engine. In this study, we selected a double-walled vacuum-insulated fuel tank with a volume of 450 liter, and the properties of the fuel contained in it were assumed to be the same as those of the methane($CH_4$). For the increasing the non-venting fuel storage time, we propose the use of shielded penetration pipes in the tank. We compared the storage times of the tank used in our study with those of the conventional fuel tank. Further, the additional heat input required to maintain the fuel pressure necessary for an appropriate fuel supply rate was predicted. For these parameters, we derived a thermodynamic relationship that can be used to estimate the rate of increase in pressure for a known heat input, and we obtained equations for estimating the rate of heat leaked by using the established heat transfer model. From the results of numerical computation, we found the non-venting storage time of the tank with shielded pipes to be 25-30% higher than that of the tank with unshielded pipes. Further, we determined the appropriate operation conditions by taking into consideration the transfer rate of additional heat provided to the fuel tank.

Study of Equilibrium, Kinetic and Thermodynamic Parameters about Fluorescein Dye Adsorbed onto Activated Carbon (활성탄을 이용한 플루오레세인 염료 흡착에 대한 평형, 동력학 및 열역학 파라미터의 연구)

  • Lee, Jong-Jib;Um, Myeong Heon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.450-455
    • /
    • 2012
  • The paper includes the utlization of an activated carbon as a potential adsorbent to remove a hazardous fluorescein dye from an aqueous solution. Batch adsorption experiments were carried out for the removal of fluorescein dyes using a granular activated carbon as an adsorbent. The effects of various parameters such as pH, amount of adsorbent, contact time, initial concentration and temperature of the adsoprtion system were investigated. The experimental results revealed that activated carbon exhibit high efficiencies to remove fluorescein dyes from the aqueous solution. The equilibrium process can be well described by Freundlich isotherm in the temperature range from 298 K to 318 K. From adsorption kinetic experiments, the adsorption process followed a pseudo second order kinetic model, and the adsorption rate constant ($k_2$) decreased with increasing the initial concentration of fluorescein. The free energy of adsorption ${\Delta}G^0$), enthalpy ${\Delta}H^0$), and entropy (${\Delta}S^0$) change were calculated to predict the nature adsorption. The estimated values for ${\Delta}G^0$ were -17.11~-20.50 kJ/mol over an activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^0$, 33.2 kJ/mol, indicates that the adsorption of fluorescein dyes on an activated carbon is an endothermic process.

Prediction of Pathway and Toxicity on Dechlorination of PCDDs by Linear Free Energy Relationship (다이옥신의 환원적 탈염화 분해 경로와 독성 변화예측을 위한 LFER 모델)

  • Kim, Ji-Hun;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2009
  • Reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and its toxicity change were predicted by the linear free energy relationship (LFER) model to assess the zero-valent iron (ZVI) and anaerobic dechlorinating bacteria (ADB) as electron donors in PCDDs dechlorination. Reductive dechlorination of PCDDs involves 256 reactions linking 76 congeners with highly variable toxicities, so is challenging to assess the overall effect of this process on the environmental impact of PCDD contamination. The Gibbs free energies of PCDDs in aqueous solution were updated to density functional theory (DFT) calculation level from thermodynamic results of literatures. All of dechlorination kinetics of PCDDs was evaluated from the linear correlation between the experimental dechlorination kinetics of PCDDs and the calculated thermodynamics of PCDDs. As a result, it was predicted that over 100 years would be taken for the complete dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) to non-chlorinated compound (dibenzo-p-dioxin, DD), and the toxic equivalent quantity (TEQ) of PCDDs could increase to 10 times larger from initial TEQ with the dechlorination process. The results imply that the single reductive dechlorination using ZVI or ADB is not suitable for the treatment strategy of PCDDs contaminated soil, sediment and fly ash. This LFER approach is applicable for the prediction of dechlorination process for organohalogen compounds and for the assessment of electron donating system for treatment strategies.

Effects of pH and Temperature on the Adsorption of Cationic Dyes from Aqueous Suspension by Maghnia Montmorillonite (수용액으로부터 양이온 염료 흡수에 대한 pH 및 온도 효과)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.208-217
    • /
    • 2011
  • The effects of pH and temperature on the removal of two dyes (neutral red; NR and malachite green oxalates; MG) from aqueous effluents using Maghnia montmorillonite clay in a batch adsorption process were investigated. The results showed the stability of the optical properties of MG in aqueous solution and adsorbed onto clay under wide range of pH 3-9. However, the interaction of NR dye with clay is accompanied by a red shift of the main absorption bands of monomer cations under pH range of 3-5, whereas, those of neutral form remains nearly constant over the pH range of 8-12. The optimal pH for favorable adsorption of the dyes, i.e. ${\geq}$90% has been achieved in aqueous solutions at 6 and 7 for NR and VM respectively. The most suitable adsorption temperatures were 298 and 318 K with maximum adsorption capacities of 465.13mg/g for NR and 459.89 mg/g for MG. The adsorption equilibrium results for both dyes follow Langmuir, Freundlich isotherms. The numerical values of the mean free energy $E_a$ of 4.472-5.559 kj/mol and 2.000-2.886 kj/mol for NR and MG respectively indicated physical adsorption. Various thermodynamic parameters, such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$, ${\Delta}G^{\circ}$ and Ea have been calculated. The data showed that the adsorption process is spontaneous and endothermic. The sticking probability model was further used to assess the potential feasibility of the clay mineral as an alternative adsorbent for organic ion pollutants in aqueous solution.

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF