• Title/Summary/Keyword: thermodynamic effect

Search Result 375, Processing Time 0.025 seconds

Effect of Promotor Addition to Pt/TiO2 Catalyst on Reverse Water Gas Shift Reaction (RWGS 반응을 위한 Pt/TiO2 촉매의 조촉매 첨가 영향 연구)

  • Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.339-344
    • /
    • 2017
  • Reaction characteristics and catalytic activities on reverse water gas shift (RWGS) reaction over $Pt/TiO_2$ catalyst and Pt based catalysts added promoters were investigated. It was confirmed that RWGS reaction activity was affected by the kind of supports and active metals and the $Pt/TiO_2$ catalyst showed the highest catalytic activity. From various inlet $CO_2$ concentration tests and also the evaluation of thermodynamic equilibrium conversion, the catalytic activity of $Pt/TiO_2$ catalyst could be evaluated objectively and it was found to be higher than that of commercial catalysts. The catalytic activity could increase by adding Ca and Na as promoters. The XPS analysis revealed that the catalytic activity is closely correlated with the electron density of surface active sites.

The Effect of Substituent, Pressure and Temperature on the Dissociation Constants of Organic Acids. (2) Dissociation Constants of Some Substituted Naphthols in Aqueous Solution (유기산의 해리평형에 미치는 치환기 효과와 그의 온도 및 압력의 영향. (2) 수용액중에서 몇가지 치환나프톨류의 해리상수)

  • Jung-Ui Hwang;Zun-Ung Bae;Jong-Jae Chung;Jae-Won Jung;Kyung-Hee Chang
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.152-158
    • /
    • 1986
  • The dissociation constants of 4-Cl-1-naphthol, 6-Br-2-naphthol and $8-NH_2-2-naphthol$ in aqueous solution were measured by spectroscopic method in the temperature range from 25 to 40${\circ}C$ and pressure up to 2000bar. The dissociation constants were decreased as the substituents were inserted in naphthol f rom $4.4{\times}10^{-10}\;to\;5.82{\times}10^{-11}$ as chloride compound and $2.5{\times}10^{-10}\;to\;3.44{\times}10^{-11}\;or\;4.21{\times}10^{-11}$ as bromine or amino compounds, respectively. This decrease can be explained with the I-or R-effects of substituents. From the dissociation constants various thermodynamic properties were calculated and discussed the characteristics of the dissociation reaction.

  • PDF

The Effect of Pressure on the Solvolysis Reaction of p-Nitrobenzyl Chloride in Binary Mixture of Ethanol-Water (에탄올-물 혼합용매내에서의 p-니트로벤질클로라이드의 가용매 분해반응에 대한 압력의 영향)

  • Oh Cheun Kwun;Jeong Rim Kim;Jee Cheol Ryu
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.152-159
    • /
    • 1981
  • The rates of solvolysis for p-nitrobenzyl chloride have been measured by the electric conductivity method in aqueous ethanol from 0.0 to 0. 5 mole fraction of ethanol under various pressures up to 1200bar at 50 and $60{\circ}C$. The activation parameters, ${\Delta}V_\0^{\neq},\ {\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$ are evaluated from the rate constants. The results indicated that ${\Delta}V_\0^{\neq}$ exhibits an extremum behaviors near 0.3 mole fraction of ethanol and ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$ near 0.1 mole fraction of ethanol. This behaviors are discussed in terms of solvent structure variation and the pressure dependences of ${\Delta}H^{\neq},\ {\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$ are also discussed individually. The signs of the pressure dependence of ${\Delta}H^{\neq}$${\Delta}S^{\neq}$ are shown to be consistent with those required by the Maxwell relationships for classical thermodynamic systems.

  • PDF

Pressure Effect on the Aquation of trans-[Cr(tn)$_2Cl_2]^+$ and trans-[Cr(en)(tn)Cl$_2]^+$ Complex Ions (trans-[Cr(tn)$_2Cl_2]^+$ 및 trans-[Cr(en)(tn)Cl$_2]^+$ 착이온의 수화반응에 미치는 압력효과)

  • Jong-Jae Chung;Jong-Ha Choi;Deog-Jin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.375-381
    • /
    • 1987
  • Rates for the aquation of trans-[Cr(tn)$_2Cl_2]^+$ and trans-[Cr(en)(tn)Cl$_2$]^+$ ions in aqueous acidic solution have been measured by spectrophotometric method at various temperatures and pressures. Activation volumes are negative and lie in the limited range -1.7 ∼ -2.9cm$^3$mol$^{-1}$ or the complex ions. Activation entropies and activation compressibility coefficients are small negative values. From the results of thermodynamic parameters, it can be inferred that the aquation of the complex ions proceed through an associative interchange(Ia) mechanism. Furthermore, the information on possible transition state structure and reaction paths can be obtained by considering total stabilization energy of the hypothetical intermediates within the framework of angular overlap model. It is found that the theoretically predicted mechanism is consistent with the experimentally observed results.

  • PDF

Surface Transition by Solvent Washing Effects and Biological Properties of Metal Treated Activated Carbons

  • Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.639-646
    • /
    • 2004
  • Metal treated activated carbons are prepared using various metals. Adsorption behaviors, morphologies, as well as antibacterial effects of metal treated samples are compared before and after solvent washing. Adsorption isotherms are used to characterize the porous structure of metal treated activated carbons before and after the solvent washing with acetone or ethyl alcohol. From these data, it is noticed that the changes in physicochemical properties of metal treated activated carbons depend on the solvents employed. Similar results are observed from BET data obtained from nitrogen adsorption isotherms. From scanning electron microscopy (SEM) studies, the changes in shape and size of metal particles are observed after the samples are washed with solvents. These changes result in different blocking effects, which, in turn, affect the adsorption behavior of metal treated activated carbons. X-ray diffraction (XRD) patterns of the samples treated with different metals are different each other. High intense sharp peaks attributed to metals are observed from silver treated samples, while the peaks are not observed from copper treated samples. To compare thermodynamic behavior of metal treated activated carbons washed with different type of solvents, differential scanning calorimetric (DSC) analysis is carried out. The analysis shows similar endothermic curves for all of the samples. Finally, antibacterial effects of metal treated activated carbon against Escherichia coli are discussed. Comparing the effects among the metals employed, highest effects are obtained from Cd, while lowest effects are obtained from Cu. Antibacterial activity becomes higher with the increase of the amount of metals treated, Optimum concentrations of metals to treat activated carbons, obtained from a shake flask test, are known to be 0.4, 0.1, and 0.6 moles for Ag, Cd, and Cu, respectively.

Changes in the Characteristics of Wintertime Climatology Simulation for METRI AGCM Using the Improved Radiation Parameterization (METRI AGCM의 복사 모수화 개선에 따른 겨울철 기후모의의 특징적 변화)

  • Lim, Han-Cheol;Byun, Young-Hwa;Park, Suhee;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.127-143
    • /
    • 2009
  • This study investigates characteristics of wintertime simulation conducted by METRI AGCM utilizing new radiation parameterization scheme. New radiation scheme is based on the method of Chou et al., and is utilized in the METRI AGCM recently. In order to analyze characteristics of seasonal simulation in boreal winter, hindcast dataset from 1979 to 2005 is produced in two experiments - control run (CTRL) and new model's run (RADI). Also, changes in performance skill and predictability due to implementation of new radiation scheme are examined. In the wintertime simulation, the RADI experiment tends to reduce warm bias in the upper troposphere probably due to intensification of longwave radiative cooling over the whole troposphere. The radiative cooling effect is related to weakening of longitudinal temperature gradient, leading to weaker tropospheric jet in the upper troposphere. In addition, changes in vertical thermodynamic structure have an influence on reduction of tropical precipitation. Moreover, the RADI case is less sensitive to variation of tropical sea surface temperature than the CTRL case, even though the RADI case simulates the mean climate pattern well. It implies that the RADI run does not have significant improvement in seasonal prediction point of view.

The Effects of Substituent, Pressure and Temperature on the Dissociation Constants of Organic Acids (VII). Dissociation Constants of Some ${\omega}$-Amino Acid in Aqueous Solution (유기산의 해리평형에 미치는 치환기 효과와 그의 온도 및 압력의 영향 (제 7 보). 수용액중에서 몇가지 ${\omega}$-아미노산의 해리)

  • Jung Ui Hwang;Young Woo Kwak;Jae Won Jung
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.343-349
    • /
    • 1989
  • The dissociation constants of ${\beta}$-alanine and ${\gamma}$-aminobutyric acid were measured in the temperature range from 20 to $40^{\circ}C$ and pressure up to 2,500 bar by conductometric method. The both dissociation constants of respective amino acid increase with temperature increase but pressure effect is not same as the temperature. The $K_1$ increases as pressure increases but $K_2$ decreases. The properties of these amino acids were discussed in terms of the thermodynamic properties of the dissociation reaction. A relationship between the dissociation constants and the distance between substituted groups of amino acid was discussed. The substituted effects of the reaction were deduced from Hammett reaction and substituted constants which were calculated from the measured dissociation constants.

  • PDF

Effect of Additives on the Characteristics of Amorphous Nano Boron Powder Fabricated by Self-Propagating High Temperature Synthesis (자전연소합성법을 이용한 비정질 나노 붕소 분말 특성에미치는 첨가제의 영향)

  • Joo, Sin Hyong;Nersisyan, Hayk H.;Lee, Tae Hyuk;Cho, Young Hee;Kim, Hong Moule;Lee, Huk Hee;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.659-665
    • /
    • 2015
  • The self-propagating high temperature synthesis approach was applied to synthesize amorphous boron nano-powders in argon atmospheres. For this purpose, we investigated the characteristics of a thermally induced combustion wave in the $B_2O_3+{\alpha}Mg$ system(${\alpha}=1.0-8.0$) in an argon atmospheres. In this study, the exothermic nature of the $B_2O_3-Mg$ reaction was investigated using thermodynamic calculations. Experimental study was conducted based on the calculation data and the SHS products consisting of crystalline boron and other compounds were obtained starting with a different initial molar ratio of Mg. It was found that the $B_2O_3$ and Mg reaction system produced a high combustion temperature with a rapid combustion reaction. In order to regulate the combustion reaction, NaCl, $Na_2B_4O_7$ and $H_3BO_3$ additives were investigated as diluents. In an experimental study, it was found that all diluents effectively stabilized the reaction regime. The final product of the $B_2O_3+{\alpha}Mg$ system with 0.5 mole $Na_2B_4O_7$ was identified to be amorphous boron nano-powders(< 100 nm).

Alloy Design and Properties of Ni based Superalloy LESS 1: I. Alloy Design and Phase Stability at High Temperature (Ni기 초내열 합금 LESS 1의 합금설계 및 평가: I. 합금 설계 및 고온 상 안정성 평가)

  • Youn, Jeong Il;Kang, Byung Il;Choi, Bong Jae;Kim, Young Jig
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.215-225
    • /
    • 2013
  • The alloys required for fossil power plants are altered from stainless steel that has been used below $600^{\circ}C$ to Ni-based alloys that can operate at $700^{\circ}C$ for Hyper Super Critical (HSC) steam turbine. The IN740 alloy (Special Metals Co. USA) is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at about $700^{\circ}C$ indicated the formation of the eta phase with the wasting of a gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys, and this resulted in the formation of precipitation free zones to decrease the strength. On the basis of thermodynamic calculation, the new Ni-based superalloy named LESS 1 (Low Eta Sigma Superalloy) was designed in this study to improve the strengthening effect and structure stability by depressing the formation of topologically close packed phases, especially sigma and eta phases at high temperature. A thermal exposure test was carried out to determine the microstructure stability of LESS 1 in comparison with IN740 at $800^{\circ}C$ for 300 hrs. The experimental results show that a needle-shaped eta phase was formed in the grin boundary and it grew to intragrain, and a precipitation free zone was also observed in IN740, but these defects were entirely controlled in LESS 1.

Effect of Heat Treatment Temperature and Atmosphere on the Microstructure of TiH2-WO3 Powder Mixtures (열처리 온도 및 분위기가 TiH2-WO3 혼합분말의 미세조직에 미치는 영향)

  • Lee, Han-Eol;Kim, Yeon Su;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.41-45
    • /
    • 2017
  • The effects of the heat treatment temperature and of the atmosphere on the dehydrogenation and hydrogen reduction of ball-milled $TiH_2-WO_3$ powder mixtures are investigated for the synthesis of Ti-W powders with controlled microstructure. Homogeneously mixed powders with refined $TiH_2$ particles are successfully prepared by ball milling for 24h. X-ray diffraction (XRD) analyses show that the powder mixture heat-treated in Ar atmosphere is composed of Ti, $Ti_2O$, and W phases, regardless of the heat treatment temperature. However, XRD results for the powder mixture, heat-treated at $600^{\circ}C$ in a hydrogen atmosphere, show $TiH_2$ and TiH peaks as well as reaction phase peaks of Ti oxides and W, while the powder mixture heat-treated at $900^{\circ}C$ exhibits only XRD peaks attributed to Ti oxides and W. The formation behavior of the reaction phases that are dependent on the heat treatment temperature and on the atmosphere is explained by thermodynamic considerations for the dehydrogenation reaction of $TiH_2$, the hydrogen reduction of $WO_3$ and the partial oxidation of dehydrogenated Ti.