Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.1.41

Effect of Heat Treatment Temperature and Atmosphere on the Microstructure of TiH2-WO3 Powder Mixtures  

Lee, Han-Eol (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kim, Yeon Su (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.24, no.1, 2017 , pp. 41-45 More about this Journal
Abstract
The effects of the heat treatment temperature and of the atmosphere on the dehydrogenation and hydrogen reduction of ball-milled $TiH_2-WO_3$ powder mixtures are investigated for the synthesis of Ti-W powders with controlled microstructure. Homogeneously mixed powders with refined $TiH_2$ particles are successfully prepared by ball milling for 24h. X-ray diffraction (XRD) analyses show that the powder mixture heat-treated in Ar atmosphere is composed of Ti, $Ti_2O$, and W phases, regardless of the heat treatment temperature. However, XRD results for the powder mixture, heat-treated at $600^{\circ}C$ in a hydrogen atmosphere, show $TiH_2$ and TiH peaks as well as reaction phase peaks of Ti oxides and W, while the powder mixture heat-treated at $900^{\circ}C$ exhibits only XRD peaks attributed to Ti oxides and W. The formation behavior of the reaction phases that are dependent on the heat treatment temperature and on the atmosphere is explained by thermodynamic considerations for the dehydrogenation reaction of $TiH_2$, the hydrogen reduction of $WO_3$ and the partial oxidation of dehydrogenated Ti.
Keywords
$TiH_2-WO_3$ powder; Dehydrogenation; Hydrogen reduction; Microstructure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. R. Boyer: Mater. Sci. Eng. A, 213 (1996) 103.   DOI
2 M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens: Structure and Properties of Titanium and Titanium Alloys, C. Leyens and M. Peters (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003) 1.
3 M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia: Prog. Mater. Sci., 54 (2009) 397.   DOI
4 H. Choe, S. M. Abkowitz, S. Abkowitz and D. C. Dunand: J. Alloy. Compd., 390 (2005) 62.   DOI
5 R. Bhagat, M. Jackson, D. Inman and R. Dashwood: J. Electrochem. Soc., 156 (2009) E1.   DOI
6 J. H. Park, D. W. Lee and J. R. Kim: J. Korean Powder Metall. Inst., 17 (2010) 385.   DOI
7 K. G. Prashanth: Mater. Manuf. Process., 25 (2010) 974.   DOI
8 I. M. Robertson and G.B. Schaffer: Powder Metall., 53 (2010) 12.   DOI
9 J. N. Gwak, S. Yang, J. Y. Yun, J. Y. Kim, S. Park, H. S. Kim, Y. J. Kim and Y. H. Park: J. Korean Powder Metall. Inst., 20 (2013) 467.   DOI
10 E. Nyberg, M. Miller, K. Simmons and K.S. Weil: Mater. Sci. Eng. C, 25 (2005) 336.   DOI
11 D. G. Kim, S. T. Oh, H. Jeon, C. H. Lee and Y. D. Kim: J. Alloy. Compd., 354 (2003) 239.   DOI
12 A. Rasooli, M. A. Boutorabi, M. Divandari and A. Azarniya: Bull. Mater. Sci., 36 (2013) 301.   DOI
13 Y. Li, X. M. Chou and L. Yu: Powder Metall., 49 (2006) 236.   DOI
14 V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng. A, 356 (2003) 190.   DOI