• 제목/요약/키워드: thermo-mechanical cycle

검색결과 58건 처리시간 0.03초

극저온 환경에서 탄소섬유강화 복합재의 인장 물성에 관한 연구 (A Study on Tensile Properties of CFRP Composites under Cryogenic Environment)

  • 김명곤;강상국;김천곤;공철원
    • Composites Research
    • /
    • 제17권6호
    • /
    • pp.52-57
    • /
    • 2004
  • 본 연구에서는 환경 챔버를 이용한 극저온 환경에서, 열.하중 사이클에 따른 탄소섬유강화 복합재의 인장 물성 변화를 고찰하였다. Graphite/epoxy 일방향 복합재 시편에 대하여 시편 상온파손하중의 절반을 가한 상태에서, 상온에서 $-50^{\circ}C$, $-100^{\circ}C$, 그리고 $-150^{\circ}C$ 까지 각각 3회, 6회, 그리고 10회의 열-하중 사이클을 수행한 후 복합재의 인장 강도와 강성을 측정하였다. 그 결과, 온도가 낮아질수록 복합재의 인장 강성은 증가한 반면, 인장 강도는 감소함을 보였다. 그러나 복합재의 인장 강성은 저온 사이클 횟수에 거의 영향을 받지 않았으며 인장 강도는 사이클을 수행하지 않았을 때 보다 오히려 저온 사이클 수행 후 증가함을 확인할 수 있었다. 따라서 실험결과의 고찰을 위해 저온에서 복합재 시편의 열팽창계수를 측정하였고, 주사 전자 현미경 사진을 통해 섬유와 모재의 계면을 분석하였다.

Analysis of Compression-induced Auto-ignition Combustion Characteristics of HCCI and ATAC Using the Same Engine

  • Iijima, Akira;Shoji, Hideo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1449-1458
    • /
    • 2006
  • Controlled Auto-ignition (CAI) combustion processes can be broadly divided between a CAI process that is applied to four-cycle engines and a CAI process that is applied to two-cycle engines. The former process is generally referred to as Homogeneous Charge Compression Ignition (HCCI) combustion and the later process as Active Thermo-Atmosphere Combustion (ATAC) The region of stable engine operation differs greatly between these two processes, and it is thought that the elucidation of their differences and similarities could provide useful information for expanding the operation region of HCCI combustion. In this research, the same two-cycle engine was operated under both the ATAC and HCCI combustion processes to compare their respective combustion characteristics. The results indicated that the ignition timing was less likely to change in the ATAC process in relation to changes in the fuel octane number than it was in the HCCI combustion process.

DEVELOPMENT OF THE ENIGMA FUEL PERFORMANCE CODE FOR WHOLE CORE ANALYSIS AND DRY STORAGE ASSESSMENTS

  • Rossiter, Glyn
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.489-498
    • /
    • 2011
  • UK National Nuclear Laboratory's (NNL's) version of the ENIGMA fuel performance code is described, including details of the development history, the system modelled, the key assumptions, the thermo-mechanical solution scheme, and the various incorporated models. The recent development of ENIGMA in the areas of whole core analysis and dry storage applications is then discussed. With respect to the former, the NEXUS code has been developed by NNL to automate whole core fuel performance modelling for an LWR core, using ENIGMA as the underlying fuel performance engine. NEXUS runs on NNL's GEMSTONE high performance computing cluster and utilises 3-D core power distribution data obtained from the output of Studsvik Scandpower's SIMULATE code. With respect to the latter, ENIGMA has been developed such that it can model the thermo-mechanical behaviour of a given LWR fuel rod during irradiation, pond cooling, drying, and dry storage - this involved: (a) incorporating an out-of-pile clad creep model for irradiated Zircaloy-4; (b) including the ability to simulate annealing out of the clad irradiation damage; (c) writing of additional post-irradiation output; (d) several other minor modifications to allow modelling of post-irradiation conditions.

변온 하중하에 있는 재료의 이력거동 예측을 위한 다층 모델에 관한 연구 (A Study on the Overlay Model for Description of Hysteresis Behavior of a Material under Non-isothermal Loading)

  • 김상호;서동훈;여태인
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.133-142
    • /
    • 2010
  • The present work focuses on the characterization of material parameters of the Overlay(multilinear hardening) model for analyzing the non-isothermal cyclic deformation. In the previous study, all the parameters were especially based on the Overlay theories, and a simple method was suggested to find out the best material parameters for the isothermal cyclic deformation analysis. Based on the previous research this paper f dther improves the isothermal parameters and suggests how to apply the isothermal parameters to the non-isothermal conditions especially for the description of TMF(Thermo-Mechanical Fatigue) hysteresis behavior. The parameters are determined and calibrated using 400 series stainless steel test data in the reference papers. For the implementation into ABAQUS, a user subroutine is developed by means of ABAQUS/UMAT. The finite element results show good agreement with test for the case of uniaxial non-isothermal cyclic loading, signifying the proposed method can be used in the TMF analysis of the converter-inserted heavy duty muffler system and the stainless steel exhaust-manifold system which are to be done in our future research.

Nb 및 Mo 첨가 페라이트계 스테인리스강의 등온 저주기 및 열기계적 피로에 따른 변형거동 (Cyclic Deformation Behaviors under Isothermal and Thermomechanical Fatigue Conditions in Nb and Mo Added 15Cr Ferritic Stainless Steel)

  • 정재규;오승택;최원두;이두환;임종대;오용준
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.707-715
    • /
    • 2009
  • This paper deals with cyclic stress and strain responses during isothermal low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) loadings on Nb and Mo containing 15Cr stainless steel, which is used for exhaust manifolds in automobiles. The test temperatures ($T_{i}$) of the isothermal LCF were 600 and $800^{\circ}C$. The minimum temperature of the TMF test was $100^{\circ}C$ and the maximum temperaures ($T_{p}$) were varied between 500 and $800^{\circ}C$. In both loading conditions, weak cyclic softening is observed at $T_{i}=T_{p}=800^{\circ}C$, but the transition to strong cyclic hardening is completed with the temperature decrease below $T_i=600{\sim}700^{\circ}C$ for LCF and $T_{p}=500{\sim}600^{\circ}C$ for TMF. The stress-strain hysteresis loops in the TMF loading show a significant stress relaxation during compressive (heating) half cycle at $T_{p}>500^{\circ}C$, which develops tensile mean stress during cycling. Due to the stress relaxation, the TMF test sample reveals much lower dislocation density than the isothermally fatigued sample at the same temperature with $T_{p}$. A detailed correlation between fatigue microstructure and cycling deformation behavior is discussed.

화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석 (Service Life Analysis of Control Valve far Automatic Turbine Startup of Thermal Power Plant)

  • 김효진;강용호
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2002
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable △T limit currie during the startup. Because allowable ΔT limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage, combined rupture and low cycle fatigue damage criterion were proposed for yielding the allowable ΔTf limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has been performed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ΔT limit curve.

모아레 간섭계를 이용한 CBGA 패키지의 비선형 열변형 해석 (Non-linear Temperature Dependent Deformation Anaysis of CBGA Package Assembly Using Moir′e Interferometry)

  • 주진원;한봉태
    • 마이크로전자및패키징학회지
    • /
    • 제10권4호
    • /
    • pp.1-8
    • /
    • 2003
  • 고감도 모아레 간섭계를 이용하여 세라믹 ball grid array 패키지 결합체의 열-기계적 거동을 분석하였다. 한 온도 사이클의 선택된 몇 개의 온도 단계에서 모아레 간섭무늬를 기록하고 해석하였다. 패키지 결합체의 온도변화에 따른 전체적인 변형과 국부적인 변형거동을 정량적으로 나타내었고, 패키지의 굽힘변형과 맨 바깥쪽 솔더볼의 전단변형률에 대한 거동을 토의하였다. 높은 온도에서는 저온 융점 솔더의 응력완화로 인하여 심각한 비선형 거동이 발생되었으며. 솔더볼의 변형을 해석한 결과 높은 온도에서 저온용융 솔더부에 비탄성 변형이 축적되었음을 알 수 있었다.

  • PDF

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • 방사성폐기물학회지
    • /
    • 제21권1호
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.

화력발전소 증기터빈용 12Cr 강의 저주기 피로거동 (Low Cycle Fatigue Behavior of 12Cr Steel for Thermal Power Plant Steam Turbine)

  • 강명수
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.71-76
    • /
    • 2002
  • In this study low cycle fatigue (LCF) behavior of 12Cr steel at high temperature are described. Secondly, comparisons between predicted lives and experimental lives are made for the several sample life prediction models. Two minute hold period in either tension or compression reduce the number of cycles to failure by about a factor of two. Twenty minute hold periods in compression lead to shorter lives than 2 minute hold periods in compression. Experiments showed that life predictions from classical phenomenological models have limitations. More LCF experiments should be pursued to gain understanding of the physical damage mechanisms and to allow the development of physically-based models which can enhance the accuracy of the predictions of components. From a design point-of-view, life prediction has been judged acceptable for these particular loading conditions but extrapolations to thermo-mechanical fatigue loading, for example, require more sophisticated models including physical damage mechanisms.