• Title/Summary/Keyword: thermo-mechanical coupling analysis

Search Result 37, Processing Time 0.027 seconds

저합금강판의 열간프레스성형에 따른 상변태 전산 해석

  • Bok, Hyeon-Ho;Kim, Hun-Dong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • Recently, hot stamping process has been paid attention greatly by automobile makers in accordance with the fuel efficiency and environmental issues as well as crash safety issue. The hot-stamped parts, however, demand extreme mechanical properties such as tensile strength of over 1470 MPa or equivalently Vickers hardness of around 450. In this work, to meet the demand efficiently, a method to predict mechanical property of hot-stamped parts based on numerical phase transformation scheme has been proposed associated with the thermo-mechanical coupled finite element analysis. This work deals with various phase transformation equations and validates them to select appropriate model for 0.2C-0.1Si-1.4Mn-0.5Cr-0.01Mo-0.002B steel sheet. The authors show that an efficient method saving time and cost to develop hot-stamped automobile parts ensuring suitable mechanical properties such as Vickers hardness and strength.

  • PDF

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

Thermo-mechanical stress analysis of feed-water valves in nuclear power plants

  • Li, Wen-qing;Zhao, Lei;Yue, Yang;Wu, Jia-yi;Jin, Zhi-jiang;Qian, Jin-yuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.849-859
    • /
    • 2022
  • Feed-water valves (FWVs) are used to regulate the flow rate of water entering steam generators, which are very important devices in nuclear power plants. Due to the working environment of relatively high pressure and temperature, there is strength failure problem of valve body in some cases. Based on the thermo-fluid-solid coupling model, the valve body stress of the feed-water valve in the opening process is investigated. The flow field characteristics inside the valve and temperature change of the valve body with time are studied. The stress analysis of the valve body is carried out considering mechanical stress and thermal stress comprehensively. The results show that the area with relatively high-velocity area moves gradually from the bottom of the cross section to the top of the cross section with the increase of the opening degree. The whole valve body reaches the same temperature of 250 ℃ at the time of 1894 s. The maximum stress of the valve body meets the design requirements by stress assessment. This work can be referred for the design of FWVs and other similar valves.

Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography (초음파-적외선 열화상 기법에 의한 피로균열 검출에 있어 발열 메커니즘 분석)

  • Choi, Man-Yong;Lee, Seung-Seok;Park, Jeong-Hak;Kim, Won-Tae;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.10-14
    • /
    • 2009
  • Heat generation mechanism of ultrasound infrared thermography is still not well understood, yet and there are two reliable assumptions of heat generation, friction and thermo-mechanical effect. This paper investigates the principal cause of heat generation at fatigue crack with experimental and numerical approach. Our results show most of heat generation is contributed by friction between crack interface and thermo-mechanical effect is a negligible quantity.

A new element elimination model to predict fire-induced damage on an underground structure (요소제거기법을 적용한 지하구조물의 화재손상 예측모델 개발)

  • Chang, Soo-Ho;Choi, Soon-Wook;Bae, Gyu-Jin;Ahn, Sung-Youll
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.313-327
    • /
    • 2008
  • Thermo-mechanical coupled behavior of an underground structure during a fire accident have not been fully understood yet. Moreover, when such a thermo-mechanical coupled behavior is not considered in numerical analyses based on conventional heat transfer theory, fire-induced damage zone in an underground structure can be considerably underestimated. This study aims to develop a FEM-based numerical technique to simulate the thermo-mechanical coupled behavior of an underground structure in a fire accident. Especially, an element elimination model is newly proposed to simulate fire-induced structural loss together with a convective boundary condition. In the proposed model, an element where the maximum temperature calculated from heat transfer analysis is over a prescribed critical temperature is eliminated. Then, the proposed numerical technique is verified by comparing numerical results with experimental results from real fire model tests. From a series of parametric studies, the key parameters such as critical temperature, element size and temperature-dependent convection coefficients are optimized for the RABT and the RWS fire scenarios.

  • PDF

Analysis of Anisotropic Structures under Multiphysics Environment (멀티피직스 환경하의 이방성 구조물 해석)

  • Kim, Jun-Sik;Lee, Jae-Hun;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.140-145
    • /
    • 2011
  • An anisotropic beam model is proposed by employing an asymptotic expansion method for thermo-mechanical multiphysics environment. An asymptotic method based on virtual work is introduced first, and then the variables of mechanical displacement and temperature rise are asymptotically expanded by taking advantage of geometrical slenderness of elastic bodies. Subsequently substituting these expansions into the virtual work principle allows us to asymptotically expand the virtual work. This will yield a set of recursive virtual works from which two-dimensional microscopic and one-dimensional macroscopic equations are systematically derived at each order. In this way, homogenized stiffnesses and thermomechanical coupling coefficients are derived. To demonstrate the validity and efficiency of the proposed approach, composite beams are taken as a test-bed example. The results obtained herein are compared to those of three-dimensional finite element analysis.

Hygrothermal sound radiation analysis of layered composite plate using HFEM-IBEM micromechanical model and experimental validation

  • Binita Dash;Trupti R Mahapatra;Punyapriya Mishra;Debadutta Mishra
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.265-281
    • /
    • 2024
  • The sound radiation responses of multi-layer composite plates subjected to harmonic mechanical excitation in hygrothermal environment is numerically investigated. A homogenized micromechanical finite element (FE) based on the higher-order mid-plane kinematics replicating quadratic function as well as the through the thickness stretching effect together with the indirect boundary element (IBE) scheme has been first time employed. The isoparametric Lagrangian element (ten degrees of freedom per node) is used for discretization to attain the hygro-thermo-elastic natural frequencies and the modes of the plate via Hamilton's principle. The effective material properties under combined hygrothermal loading are considered via a micromechanical model. An IBE method is then implemented to attain structure-surrounding coupling and the Helmholtz wave equation is solved to compute the sound radiation responses. The effectiveness of the model is tested by converging it with the similar analytical/numerical results as well as the experimentally acquired data. The present scheme is further hold out for solving diverse numerical illustrations. The results revealed the relevance of the current higher-order FE-IBE micromechanical model in realistic estimation of hygro-thermo-acoustic responses. The geometrical parameters, volume fraction of fiber, layup, and support conditions alongside the hygrothermal load is found to have significant influence on the vibroacoustic characteristics.

Stress wave propagation in composite materials

  • Shen, Siyuan J.;Pfister, Jens C.;Lee, James D.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.407-422
    • /
    • 2001
  • The linear constitutive relations and the failure criteria of composite materials made of thermoviscoelastic solids are presented. The post-failure material behavior is proposed and the dynamic finite element equations are formulated. However, a nonlinear term is kept in the energy equation because it represents the effect of the second law of thermodynamics. A general purpose nonlinear three-dimensional dynamic finite element program COMPASS is upgraded and employed in this work to investigate the interdependence among stress wave propagation, stress concentration, failure progression and temperature elevation in composite materials. The consequence of truthfully incorporating the second law of thermodynamics is clearly observed: it will always cause temperature rise if there exists a dynamic mechanical process.

A numerical study on the coupled thermo-hydro-mechanical behavior of discontinuous rock mass (불연속암반에서의 열-수리-역학적 상호작용에 대한 수치해석적 연구)

  • 김명환;이희석;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • A finite element code was developed to analyze coupled thermo-hydro-mechanical phenomena. This code is based on the finite element formulation provided by Noorishad et al. (1984) and Joint behavior was simulated Goodman's joint constitutive model. The developed code was applied for T-H-M coupling analysis for two kinds of shaft models, with a joint or without a joint respectively. For a model without a joint, temperature increased from the shaft wall to outward evidently. The radial displacement showed opposite directions of outward and inward at some distance from shaft wall. For a model with a joint, closure of joint was found due to thermal expansion. The temperature distribution along a joint showed relatively lower than that of rock matrix because of low thermal conductivity and high specific heat of water. And it could be concluded that effects of thermal flow to joint were more than that of hydraulic flow in a rock mass.

  • PDF

Thermo-mechanical coupling behavior analysis for a U-10Mo/Al monolithic fuel assembly

  • Mao, Xiaoxiao;Jian, Xiaobin;Wang, Haoyu;Zhang, Jingyu;Zhang, Jibin;Yan, Feng;Wei, Hongyang;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2937-2952
    • /
    • 2021
  • A typical three-dimensional finite element model for a fuel assembly is established, which is composed of 16 monolithic U-10Mo fuel plates and Al alloy frame. The distribution and evolution results of temperature, displacement and stresses/strains in all the parts are numerically obtained and analyzed with a self-developed code of FUELTM. The simulation results indicate that (1) the out-of-plane displacements of Al alloy side plates are mainly attributed to the bending deformations; (2) enhanced out-of-plane displacements appear in fuel plates adjacent to the outside Al plates, which results from the occurred bending deformations due to the applied constraints of outside Al plates; (3) an intense interaction of fuel foil with the cladding occurs near the foil edge, which appears more heavily in the fuel plates adjacent to the outside Al plates. The maximum first principal stresses in the fuel foil are similar for all the fuel plates and appear near the fuel foil edge; while, the through-thickness creep strains of fuel foil in the fuel plate near the central region of fuel assembly are larger, and the induced creep damage might weaken the fuel skeleton strength and raise the fuel failure risk.