• Title/Summary/Keyword: thermo-mechanical analysis

Search Result 565, Processing Time 0.027 seconds

Enhanced First-Order Shear Deformation Theory for Thermo-Mechanical-Viscoelastic Analysis of Laminated Composite Structures (복합재료 적층 구조물에 대한 열-기계-점탄성 연성 거동 예측을 위한 개선된 일차전단변형이론)

  • Kim, Jun-Sik;Han, Jang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an enhanced first-order shear deformation theory is proposed to efficiently and accurately predict the thermo-mechanical-viscoelastic coupled behavior of laminated composite structures. To this end, transverse shearstress and displacement fields are independently assumed, and the strain-energy relationship between these fields issystematically established using the mixed variational theorem (MVT). In MVT, the transverse shear stress fields are obtained from the third-order zigzag model, whereas the displacement fields of the conventional first-order model are considered to amplify the benefits of numerical efficiency. Additionally, a transverse displacement field with a smooth parabolic distribution is introduced to accurately predict the thermal behavior of composite structures. Furthermore, the concept of Laplace transformation is newly employed to simplify the viscoelastic problem, similar to the linear-elastic problem. To demonstrate the performance of the proposed theory, the numerical results obtained herein were compared with those available in the literature.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

Thermo-mechanical Reliability Analysis of Copper TSV (구리 TSV의 열기계적 신뢰성해석)

  • Choa, Sung-Hoon;Song, Cha-Gyu
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • TSV technology raises several reliability concerns particularly caused by thermally induced stress. In traditional package, the thermo-mechanical failure mostly occurs as a result of the damage in the solder joint. In TSV technology, however, the driving failure may be TSV interconnects. In this study, the thermomechanical reliability of TSV technology is investigated using finite element method. Thermal stress and thermal fatigue phenomenon caused by repetitive temperature cycling are analyzed, and possible failure locations are discussed. In particular, the effects of via size, via pitch and bonding pad on thermo-mechanical reliability are investigated. The plastic strain generally increases with via size increases. Therefore, expected thermal fatigue life also increase as the via size decreases. However, the small via shows the higher von Mises stress. This means that smaller vias are not always safe despite their longer life expectancy. Therefore careful design consideration of via size and pitch is required for reliability improvement. Also the bonding pad design is important for enhancing the reliability of TSV structure.

Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell

  • Arefi, M.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.225-246
    • /
    • 2014
  • The present paper develops piezo-thermo-elastic analysis of a thick spherical shell for generalized functionally graded piezoelectric material. The assumed structure is loaded under thermal, electrical and mechanical loads. The mechanical, thermal and electrical properties are graded along the radial direction based on a power function with three different non homogenous indexes. Primarily, the non homogenous heat transfer equation is solved by applying the general boundary conditions, individually. Substitution of stress, strain, electrical displacement and material properties in equilibrium and Maxwell equations present two non homogenous differential equation of order two. The main objective of the present study is to improve the relations between mechanical and electrical loads in hollow spherical shells especially for functionally graded piezoelectric materials. The obtained results can evaluate the effect of every non homogenous parameter on the mechanical and electrical components.

Thermo-mechanical analysis of road structures used in the on-line electric vehicle system

  • Yang, B.J.;Na, S.;Jang, J.G.;Kim, H.K.;Lee, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.519-536
    • /
    • 2015
  • On-line electric vehicle (OLEV) is a new eco-friendly transportation system that collects electricity from a power cable buried beneath the road surface, allowing the system to resolve various problems associated with batteries in electric vehicles. This paper presents a finite element (FE) based thermo-mechanical analysis of precast concrete structures that are utilized in the OLEV system. An experimental study is also conducted to identify materials used for a joint filler, and the observed experimental results are applied to the FE analysis. Traffic loading and boundary conditions are modeled in accordance with the related standards and environmental characteristics of a road system. A series of structural analyses concerning various test scenarios are conducted to investigate the sensitivity of design parameters and to evaluate the structural performance of the road system.

Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings

  • Isavand, S.;Bodaghi, M.;Shakeri, M.;Mohandesi, J. Aghazadeh
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.1-28
    • /
    • 2015
  • In this paper, the dynamic response of functionally gradient steel (FGS) composite cylindrical panels in steady-state thermal environments subjected to impulsive loads is investigated for the first time. FGSs composed of graded ferritic and austenitic regions together with bainite and martensite intermediate layers are analyzed. Thermo-mechanical material properties of FGS composites are predicted according to the microhardness profile of FGS composites and approximated with appropriate functions. Based on the three-dimensional theory of thermo-elasticity, the governing equations of motionare derived in spatial and time domains. These equations are solved using the hybrid Fourier series expansion-Galerkin finite element method-Newmark approach for simply supported boundary conditions. The present solution is then applied to the thermo-elastic dynamic analysis of cylindrical panels with three different arrangements of material compositions of FGSs including ${\alpha}{\beta}{\gamma}M{\gamma}$, ${\alpha}{\beta}{\gamma}{\beta}{\alpha}$ and ${\gamma}{\beta}{\alpha}{\beta}{\gamma}$ composites. Benchmark results on the displacement and stress time-histories of FGS cylindrical panels in thermal environments under various pulse loads are presented and discussed in detail. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state of the art of this problem, and provide pertinent results that are instrumental in the design of FGS structures under time-dependent mechanical loadings.

Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory

  • Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.401-415
    • /
    • 2017
  • In this article, hygro-thermo-mechanical vibration and buckling of exponentially graded (EG) nanoplates resting on two-parameter Pasternak foundations are studied using the four-unknown shear deformation plate theory. The material properties are presumed to change only in the thickness direction of the EG nanoplate according to two exponential laws distribution. The boundary conditions of the nanoplate may be simply supported, clamped, free or combination of them. To consider the small scale effect on forced frequencies and buckling, Eringen's differential form of nonlocal elasticity theory is employed. The accuracy of the present study is investigated considering the available solutions in literature. A detailed analysis is executed to study the influences of the plate aspect ratio, side-to-thickness ratio, temperature rise, moisture concentration and volume fraction distributions on the vibration and buckling of the nanoplates.

Numerical Study on Thermo-Hydro-Mechanical Coupling in Rock with Variable Properties by Temperature (암석의 온도의존성을 고려한 열-수리-역학적 상호작용의 수치해석적 연구)

  • 안형준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1997
  • It is necessary to study on thermo-hydro-mechanical effect at rock mass performing project such as radiowaste disposal in deep rock mass. In this study, thermo-hydro-mechanical coupling analysis which is considered interaction and the variation of rock properties induced by temperature increase was performed for the circular shaft when appling temperature of 20$0^{\circ}C$ at the shaft wall. The shaft is diameter of 2 m and under hydrostatic stress of 5 MPa. In the cases, thermal expansion by temperature increase progress from the wall to outward and thermal expansion could induce tensile stress over the tensile strength of rock mass at the wall. When rock properties were given as a function of temperature, thermal expansion increased, tensile stress zone expanded. Lately, water flow is activated by increase of permeability and decrease of viscosity.

  • PDF

Analysis of 4WD Viscous Coupling Characteristics at Steady State (4WD용 비스코스 커플링 정상상태 특성 해석)

  • 이정석;김경하;김현진;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.21-31
    • /
    • 1998
  • In this paper, a thermo-mechanical model for viscous coupling(VC) was suggested and torque equation in viscous mode was derived considering the effects of geometry of the plates, thermo-mechanical dynamics, silicon oil characteristics and dissolved air characteristics in the silicon oil. Theoretical results were in good accordance with experimental results demonstrating that VC thermo-mechanical model and the theoretical equations, response of the torque transmitted, pressure, temperature and time to the hump were investigated. Simulation results showed that filling rate of the silicon oil plays an integral role not only in the steady state torque characteristics but also in determining the time to hump.

  • PDF

Magneto-thermo-elastic analysis of a functionally graded conical shell

  • Mehditabar, A.;Alashti, R. Akbari;Pashaei, M.H.
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.77-96
    • /
    • 2014
  • In this paper, magneto-thermo-elastic problem of a thick truncated conical shell immersed in a uniform magnetic field and subjected to internal pressure is investigated. Material properties of the shell including the elastic modulus, magnetic permeability, coefficients of thermal expansion and conduction are assumed to be isotropic and graded through the thickness obeying the simple power law distribution, while the poison's ratio is assumed to be constant. The temperature distribution is assumed to be a function of the thickness direction. Governing equations of the truncated conical shell are derived in terms of components of displacement and thermal fields and discretised with the help of differential quadrature (DQ) method. Results are obtained for different values of power law index of material properties and effects of thermal load on displacement, stress, temperature and magnetic fields are studied. Results of the present method are compared with those of the finite element method.