• Title/Summary/Keyword: thermo gravimetric analysis(TGA)

Search Result 68, Processing Time 0.022 seconds

Thermal Behavior of the Nuclear Graphite Waste Generated from the Decommissioning of the Nuclear Research Reactor (연구로 해체시 발생되는 흑연폐기물의 열적 거동)

  • 양희철;은희철;이동규;조용준;강영애;이근우;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.105-114
    • /
    • 2004
  • This study investigated the thermal behavior of the nuclear graphite waste generated from the decommissioning of the Korean nuclear research reactor, The first part study investigated the decomposition rate of the nuclear graphite waste up to $1000^{\circ}C$ under various oxygen partial pressures using a thermo-gravimetric analyzer (TGA). Tested graphite waste sample not easily destroyed in the oxygen-deficient condition. However, the gas-solid oxidation reaction was found to be very effective in the presence of oxygen. No significant amount of the product of incomplete combustion was formed even in the limited oxygen concentration of 4% $O_2$. The influence of temperature and oxygen partial pressure was evaluated by the theoretical model analysis of the thermo-gravimetric data. The activation energy and the reaction order of graphite oxidation were evaluated as 128 kJ/mole and 1.1, respectively. The second part of this study investigated the behavior of radioactive elements under graphite oxidation atmosphere using thermodynamic equilibrium model. $^{22}Na$, $^{134}Cs$ and $^{137}Cs$ were found be the semi-volatile elements. Since volatile uranium species can be formulated at high temperatures above $1050^{\circ}C$, the temperature of incinerator furnace should be minimized. Other corrosion/activation products, fission products and uranium were found to be the non-volatile species.

  • PDF

Effect of Particle Size on Thermal Property of RDX and HMX (HMX와 RDX의 열적 특성에 미치는 입자 크기의 영향)

  • Kim, Seung Hee
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.352-357
    • /
    • 2012
  • Techniques of thermal analyses such as DSC and TGA have been used in the study of activation energy (Ea) and frequency factor (A) depending on the particle size of RDX and HMX. Activation energy and frequency factor were calculated by Kissinger's method and Vyazovkin's method. As the particle size of RDX increased, TGA showed activation energy increased, but DSC didn't show. However, In case of HMX, as the particle size increased, both of DSC and TGA showed increase in activation energy. Moreover, Vyazovkin's method can obtain activation energy and mechanism according to decomposition of RDX and HMX.

Studies on thermal and swelling properties of Poly (NIPAM-co-2-HEA) based hydrogels

  • Shekhar, Suman;Mukherjee, M.;Sen, Akhil Kumar
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.269-284
    • /
    • 2012
  • Thermoresponsive hydrogels based on N-Isopropylacrylamide (NIPAM) and 2-Hydroxyethylacrylate (HEA) were prepared by free radical polymerization. The hydrogels were characterized by elemental (CHN) analysis, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). DSC thermogram showed two endothermic transitions which are due to hydration of water present in different environments. One near $0^{\circ}C$ called melting transition of ice and was used to calculate the quantitative determination of the amounts of freezing and non freezing water. The other transition above the ambient temperature was due to the combination of hydrophobic hydration and hydrophilic hydration which changes with the copolymer compositions. Swelling and deswelling studies of the hydrogels were carried out using the aqueous media, salt and urea solutions. The experimental results from swelling studies revealed that copolymers have lower rates of swelling and deswelling than the homopolymer.

Preparation of PSf/D2EHPA/CNTs Beads Immobilized with Carbon Nanotubes and Di-(2-ethylhexyl)-phosphoric acid on Polysulfone and Removal Characteristics of Sr(II) (Polysulfone에 Di-(2-ethylhexyl)-phosphoric acid와 Carbon Nanotubes를 고정화한 PSf/D2EHPA/CNTs 비드의 제조와 Sr(II)의 제거 특성)

  • Lee, Min-Gyu;Yun, Jong-Won;Suh, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.854-860
    • /
    • 2017
  • PSf/D2EHPA/CNTs beads were prepared by immobilizing extractant di-(2-ethylhexyl)- phosphoric acid (D2EHPA) and adsorbent carbon nanotubes (CNTs) on polysulfone (PSf), and the adsorption characteristics of Sr(II) on the beads were studied. The morphological characteristics of the prepared PSf/D2EHPA/CNTs beads were observed by scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), and Fourier transform infrared spectrometer (FTIR). The equilibrium time for the removal of Sr(II) by PSf/D2EHPA/CNTs beads was 60 min. The experimental kinetic data followed pseudo-second-order model more than pseudo-first-order kinetics model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was 4.75 mg/g. The removal efficiencies of Sr (II) by PSf/D2EHPA/CNTs beads were improved 2.5 times by adding the adsorbent CNTs more than by using only the extractant D2EHPA.

Pyrolysis Hazard for Nano and Micro-sized Aluminium Dusts (알루미늄 나노 및 마이크로 입자의 열분해 위험성)

  • Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.75-80
    • /
    • 2015
  • Aluminum dusts, from micro to nano-scale, are widely used in various applications such as propulsion and pyrotechnic compounds because of high burning rate. In this study, the pyrolysis hazard of aluminum dusts with different median size (sized by 70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) were investigated experimentally. The thermal decomposition characteristics of aluminum dusts with the variation of heating rate were investigated using TGA (Thermo gravimetric analysis) and was estimated the minimum ignition temperature from temperature of weight gain in nano and micro-sized aluminum dusts with different diameter. In the same condition of heating rate, the temperature of weight gain in aluminum dust layers increased with increasing of particle size and increased with increasing of heating rates in air. From the results, it was estimated that the pyrolysis hazard of aluminum dusts decrease with increasing of mean diameter.

Influence of Plasticizers on Mechanical, Thermal, and Migration Properties of Poly(Lactic Acid)/Zeolite Composites

  • Qin, Pei;Jung, Hyun-Mo;Choi, Dong-Soo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.2_1
    • /
    • pp.79-89
    • /
    • 2021
  • Poly(lactic acid) (PLA) is considered as one of the most promising bio-based polymers due to its high strength, high modulus, good processability, transparency after processing, and commercial availability. This study aimed to investigate the mechanical, thermal, and migration properties of poly(lactic acid)/zeolite (10 phr) composites prepared with various biocompatible plasticizers, such as triethyl citrate(TEC), tributyl citrate(TBC), and poly(ethylene glycol)(PEG400), through differential scanning calorimetry(DSC), thermo-gravimetric analysis(TGA) and standard tensile testing. The incorporation of PEG400 significantly increased the elongation at break, and DSC results showed that the addition of plasticizers drastically decreased the Tg of PLA/zeolite composites and improved the melt flow and processability. Besides, it was found from TGA results that PLA/zeolites composites plasticized by TEC and TBC were more easily to be thermally degraded than the composites plasticized by PEG400.

Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites

  • Ravi Kumar, B.;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • Exhausting oil resources and increasing pollution around the world are forcing researchers to look for new, renewable, biodegradable materials to lead sustainable development. The use of fiber reinforced composites based on natural fibres has increasingly begun as prospective materials for various engineering applications in the automotive, rail, construction and aerospace industries. The natural fiber chosen to make the composite material is plant-based fibre, e.g. jute fibre, and hemp fibre. Thermosetting polymer based Epoxy (LY556) was utilized as matrix material and The composites were produced using hand lay-up technique. The fabricated composites were tested for acoustic testing, thermo-gravimetric analysis (TGA) and flammability testing to asses sound absorption, thermal decomposition and fire resistivity of the structures. Hemp fibre composites have shown improved thermal stability over Jute fibre composites. However, the fire resistance characteristics of jute fibre composites are better as compared to hemp fibre composites. The sound absorption coefficient of composites was found to enhance with the increase of frequency.

Gasification reactivity of Chinese Shinwha Coal Chars with Steam (스팀을 이용한 중국산 신화 석탄 촤 가스화 반응에 관한 연구)

  • Kang, Min-Woong;Seo, Dong-Kyun;Kim, Yong-Tak;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • In this study, carbon conversion was measured using an electronic mass balance. In a lab scale furnace, each coal sample was pyrolyzed in a nitrogen environment and became coal char, which was then gasified with steam under isothermal conditions. The reactivity of coal char was investigated at various temperatures and steam concentrations. The VRM(volume reaction model), SCM(shrinking core model), and RPM(random pore model) were used to interpret experimental data. For each model the activation energy(Ea), pre-exponential factor (A), and reaction order(n) of the coal char-steam reaction were determined by applying the Arrhenius equation into the data obtained with thermo-gravimetric analysis(TGA). According to this study, it was found that experimental data agreed better with the VRM and SCM for 1,000 and $1,100^{\circ}C$, and the RPM for 1,200 and $1,300^{\circ}C$. The reactivity of chars increased with the increase of gasification temperature. The structure parameter(${\psi}$) of the surface area for the RPM was obtained.

A Study on the Thermal Decomposition and Injection Direction of Urea Solution Used in DeNOx Process (탈질공정에 사용되는 우레아 수용액의 열분해와 분사방향에 관한 연구)

  • Moon, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.531-540
    • /
    • 2009
  • In this study, thermo-gravimetric analysis(TGA) was used to investigate the effect of urea concentration and heating rate on the ammonia($NH_3$) formation process from urea solution. A newly designed pipe nozzle was inserted through a 1,000 N${\ss}$(C)/h oil firing boiler to compare the DeNOx efficiencies between the upward and downward nozzle. This experiment reveals the effect of path which an urea droplet goes through. Urea solution showed the same TGA graph without regard to the presence of oxygen. Heating rate had a great influence on the weight loss trend. But the concentration of urea solution between 10% and 40% did not affect so much the thermal decomposition temperature. Therefore, heating rate is more important factor on the thermal decomposition of urea than the concentration of urea solution. Three nozzles located at different positions showed similar DeNOx efficiencies such as 68.1%, 71.8%, 70.8% at the same temperature. Even though urea solution was injected for the same zone, the injection direction made much difference in DeNOx efficiency. A upward nozzle showed 68.1% and downward nozzle 9.5%. This results illustrate the importance of heating rate.

Thermally Induced Cationic Polymerization of Glycidyl Phenyl Ether Using Novel Xanthenyl Phosphonium Salts

  • Gupta, Mukesh Kumar;Singh, Raj Pal
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.221-226
    • /
    • 2009
  • The present study firstly describes the synthesis of novel, thermo-latent initiators based on xanthenyl phosphonium salts with different counter anions and phosphine moieties and secondly examines their efficiency in the bulk polymerization of glycidyl phenyl ether(GPE). The polymerization was performed with phosphonium salt initiators($I_{SbF6}$, $I_{PF6}$, $I_{AsF6}$ and $I_{BF4}$) at ambient temperature to $200^{\circ}C$ for 1 h. The order of initiator activity was $I_{SbF6}>I_{PF6}>I_{AsF6}>I_{BF4}$. To examine the effect of the phosphine moiety on the initiator activity, polymerization was carried out with $I_{SbF6}(Ph_{3}P)$ and $II_{SbF6}(Bu_{3}P)$ at ambient temperature to $170^{\circ}C$ for 1 h. The order of reactivity was $I_{SbF6}>II_{SbF6}$. In general, the conversion percentage increased with increasing polymerization temperature. The thermal stability of these salts was measured by thermo gravimetric analysis(TGA). The solubility of phosphonium salts in various organic solvents and epoxy monomers was also investigated.