Browse > Article
http://dx.doi.org/10.12989/amr.2012.1.4.269

Studies on thermal and swelling properties of Poly (NIPAM-co-2-HEA) based hydrogels  

Shekhar, Suman (Department of Chemical and Polymer Engineering, Birla Institute of Technology)
Mukherjee, M. (Department of Chemical and Polymer Engineering, Birla Institute of Technology)
Sen, Akhil Kumar (Department of Chemical and Polymer Engineering, Birla Institute of Technology)
Publication Information
Advances in materials Research / v.1, no.4, 2012 , pp. 269-284 More about this Journal
Abstract
Thermoresponsive hydrogels based on N-Isopropylacrylamide (NIPAM) and 2-Hydroxyethylacrylate (HEA) were prepared by free radical polymerization. The hydrogels were characterized by elemental (CHN) analysis, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). DSC thermogram showed two endothermic transitions which are due to hydration of water present in different environments. One near $0^{\circ}C$ called melting transition of ice and was used to calculate the quantitative determination of the amounts of freezing and non freezing water. The other transition above the ambient temperature was due to the combination of hydrophobic hydration and hydrophilic hydration which changes with the copolymer compositions. Swelling and deswelling studies of the hydrogels were carried out using the aqueous media, salt and urea solutions. The experimental results from swelling studies revealed that copolymers have lower rates of swelling and deswelling than the homopolymer.
Keywords
NIPAM; HEA; DSC; TGA; swelling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Weast, R.C. and Astle, M.J. (1982), Hand book of chemistry and physics, 3rd edition, CRC press Florida, E-62.
2 Wood, J.M., Attwood, D.A. and Collett, J.H. (1981), "The swelling properties of poly (2- hydroxyethyl methacrylate) hydrogels polymerized by gamma-irradiation and chemical initiation", Int. J. Pharmaceut., 7(3), 189-196.   DOI   ScienceOn
3 Kumara, A., Srivastavaa, A., Galaevb, I.Y. and Mattiasson, B. (2007), "Smart polymers: Physical forms and bioengineering applications" Prog. Polym. Sci., 32(10), 1205-1237.   DOI   ScienceOn
4 Lee, W.F. and Chen, Y.J. (2001), "Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels", J. Appl. Polym. Sci., 82(10), 2487-2496.   DOI   ScienceOn
5 Li, W., Xue, F. and Cheng, R. (2005), "States of water in partially swollen poly(vinyl alcohol) hydrogels", Polymer, 46(25), 12026-12031.   DOI   ScienceOn
6 Li, Y. and Tanaka, T. (1992), "Kinetics of swelling and shrinking of gels", J. Chem. Phys., 92(2), 1365-1371.
7 Manning, G.S. (1969), "Limiting laws and counterion condensation in polyelectrolyte solutions I. colligative properties", J. Chem. Phys., 51(3), 924-933.   DOI
8 Mu, B., Wang, T., Wu, Z., Shi, H., Xue, D. and Liu, P. (2011), "Fabrication of functional block copolymer grafted supermagnetic nanoparticles for targeted and controlled drug delivery", Coll. Surf. A., 375(1), 163-168.   DOI
9 Otake, K., Inomata, H., Konno, M. and Saita, S. (1990), "Thermal analysis of the volume phase transition with n-isopropylacrylamide gels", Macromolecules, 23(1), 283-289.   DOI
10 Shibayama, M. and Tanaka, T. (1993), "Volume phase transition and related phenomena of polymer gels", Adv. Polym. Sci., 109, 1-62.   DOI
11 Ratner, B.D. and. Miller, I.F (1972), "Interaction of urea with poly(2-hydroxyethyl methacrylate) hydrogels", J. Polym. Sci., 10(8), 2425-2445.   DOI
12 Sen, A.K., Roy, S. and Juvekar, V.A. (2007), "Effect of structure on solution and interfacial properties of sodium polystyrene sulfonate (NaPSS)", Polym. Int., 56(2), 167-174.
13 Spanoudaki, A., Fragiadakis, D., Vartzelinikaki, K., Pissis, P., Hernandez, R. and Pradas, M.M. (2006), Surface chemistry in biomedical and environmental science, 229-240.
14 Tanford, C. (1980), "The hydrophobic effect: Formation, micelles and biological membranes", 2nd edition, John Wiley and Sons, USA.
15 Thomas, W. (1964), "Encyclopedia of polymer science and technology, bikales", N., Ed. Wiley Interscience NY. 1, 177-179.
16 Tokuyama, H., Ishihara, N. and Sakohara, S. (2007), "Effects of synthesis-solvent on swelling and elastic properties of poly (N-Isopropylacrylamide) hydrogels", J. Eur. Polym., 43(12), 4975-4982.   DOI   ScienceOn
17 Van Dyke, J.D. and Kasperski, K.L. (1993), "Thermogravimetric study of polyacrylamide with evolved gas analysis", J. Polym. Sci. Pol. Chem., 31(7), 1807-1823.   DOI   ScienceOn
18 Varghese, S. (2001), "Role of hydrophobic interactions on thermosensitivity, Metal complexation and rheology of associating polymers", University of Pune, India.
19 Wang, J.W. and Wu, W. (2005), "Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels", Eur. Polym. J., 41(5), 1143-1151.   DOI   ScienceOn
20 Anna, A. and Sen, A.K. (2010), "Thermal and swelling studies of hydrophobically modified poly(acrylamide) hydrogels", J. Appl. Polym. Sci., 117(5), 2795-2802.
21 Aykara, T. and Dogmus, M. (2004), "The effect of solvent composition on swelling and shrinking properties of poly (acrylamide-co-itaconic acid)hydrogels", J. Euro. Polym., 40(11), 2605-2609.   DOI   ScienceOn
22 Campillo, C.C., SchrCoder, A.P., Marques, C.M. and epin-Donat, B.P. (2008), "Volume transition in composite poly(NIPAM)-giant unilamellar vesicles", Soft Matter., 4, 2486-2491.   DOI   ScienceOn
23 Casillas, N., Puig, J.E., Olayo, R. and Franses, E.I. (1989), "State of water and surfactant in lyotropic liquid crystals", Langmuir, 5(2), 384-389.   DOI   ScienceOn
24 Guiseppi-Elie, A., Sheppard, N.F., Brahim, S. and Narinesingh, D. (2001), "Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays" Biotechnol. Bioeng., 75(4), 475-484   DOI   ScienceOn
25 Chunyue, P., Quigde, L., Dian, Y.U., Yanping, R., Nianqian, W. and Xingcui, L. (2008), "Swelling and drug releasing properties of Poly(N-isopropylacrylamide) thermosensitive copolymeric gels", Front chem. china, 3(3), 314-319.   DOI   ScienceOn
26 Davis, T.P., Huglin, M.B. and Yip, D.C.F. (1988), "Properties of poly(N-vinyl-2-pyrrolidone) hydrogels crosslinked with ethylene glycol dimethacrylate", Polymer, 29(4), 701-706.   DOI   ScienceOn
27 Drost-Hansen, W. (1969), "Water near solid interfaces", Ind. Eng. Chem., 61(11), 10-47.   DOI
28 Gyenes, T., Torma, V., Gyarmati, B. and Zrýnyi, M. (2008), "Synthesis and swelling properties of novel pHsensitive poly(aspartic acid) gels", Acta Biomater, 4(3), 733-744.   DOI   ScienceOn
29 Hirokawa, Y. and Tanaka, T. (1984), "Volume phase transition in a nonionic gel", J. Chem. Phys., 81(12), 6379-6380.   DOI
30 Huglin, M.B., Rehab, M.M. and Zakaria, M.B. (1986), "Thermodynamic interaction in copolymeric hydrogels", Macromolecules, 19(12), 2986-2991.   DOI
31 Isreachvilli, J. (1998), Intermolecular and surface forces, Oxford University Press.
32 Katime, I., Apodaca, E.D., Mendizabal, E. and Puig, J.E. (2000), "Acrylic acid/methyl methacrylate hydrogels. i. effect of composition on mechanical and thermodynamic properties", J. Macromol. Sci. A., 37(4), 307-321.   DOI   ScienceOn
33 Kim, S. (2003), "Synthesis and charaterstics of interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and poly(N-Isopropylacrylamide)", React. Funct. Polym., 55(1), 61-67.   DOI   ScienceOn
34 Kulkarni, R.V. and Biswanath, S. (2009), "Electro responsive Polyacrylamide-grafted-xanthan Hydrogels for Drug Delivery", J. Bioact. Compat. Pol., 24(4), 368-384.   DOI   ScienceOn