• Title/Summary/Keyword: thermally activated

Search Result 96, Processing Time 0.042 seconds

Investigation of degradation mechanism of phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes through doping concentration dependence of lifetime

  • Song, Wook;Kim, Taekyung;Lee, Jun Yeob;Lee, Yoonkyoo;Jeong, Hyein
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.350-354
    • /
    • 2018
  • Lifetime study of blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was carried out to understand the dominant degradation process during electrical operation of the devices. Doping concentration dependence of the phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was studied, which demonstrated long lifetime at low doping concentration in the phosphorescent devices and at high doping concentration in the thermally activated delayed fluorescent devices. Detailed mechanism study of the two devices described that triplet-triplet annihilation is the main degradation process of phosphorescent organic light-emitting diodes, whereas triplet-polaron annihilation is the key degradation factor of the thermally activated delayed fluorescent devices.

Component Analysis of Thermally Activated Building System in Residential Buildings

  • Chung, Woong June;Lee, Yu Ji;Yoo, Mi Hye;Park, Sang Hoon;Yeo, Myoung Souk;Kim, Kwang Woo
    • Architectural research
    • /
    • v.16 no.4
    • /
    • pp.203-210
    • /
    • 2014
  • The packaged terminal air conditioner, the typical cooling system for the residential buildings, consumes a large amount of electricity in a short period time during peak hours. In order to reduce the peak load and conserve the electricity, the thermally activated building system can be used as a secondary system to handle the partial cooling load. However, the thermally activated building system may cause condensation and under-cooling. Thus, design of both systems should be performed with careful investigation in characteristics of both systems to amplify the advantages. Since the thermally activated building system has the time-delay effect which may cause under-cooling, the system is designed to handle the base load of the building. Hence, simple simulation with EnergyPlus was performed to observe the characteristics of cooling load in residential buildings. Once the possible range of the load handling ratio of the thermally activated building system was decided, characteristics of system was analyzed in terms of hardware component and operation parameters. The hardware components were analyzed in plant and system aspects and the operation parameter was evaluated in the thermal comfort aspect. As the load handling ratio increased, the thermal comfort increased due to the lower radiant mean temperatures. Within the range of thermal comfort, the several adjustments were made in setpoint temperature and electricity consumptions of difference cases were observed to decide which components and parameters were important for designing the systems.

How to Avoid Misinterpreting Experimental Data for Thermally Activated Processes (열적 활성화 반응 데이터 분석 오류 최소화에 대한 제언)

  • Ju-Hyeon Lee;Jinsung Chun;Ku-Tak Lee;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.241-248
    • /
    • 2023
  • The value of experimentally obtained data becomes highest when they are properly analyzed based on valid logics. Many physical and chemical properties such as electrical and magnetic properties, chemical reaction rates, etc. are known to be thermally activated; thus, a proper understanding of thermally-activated processes is of importance. However, there are still a number of papers published with falsely analyzed data. In this contribution, we would like to revisit the meaning of thermally-activated processes, and then reanalyze a data set published misinterpreted. By showing a step-by-step procedure for the reanalysis, we would like to help researchers who may come across such data in the future not to make mistakes in their analysis.

Effect of the Thermally Activated Diatomaceous Rock on Improving the Compressive Strength of Cement Mortar (포졸란성 규회암의 시멘트 몰탈 압축강도 증진에 관한 효과)

  • 백운화;임남웅;류한길;박종옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.166-171
    • /
    • 1996
  • This study examines whether the raw diatomaceous rock, after thermally activated for converting into a pozzolanic form, can improve cement quality(i.e., compressive strength) of the cement-mortar. The diatomaceous rock, heat-treated at 75$0^{\circ}C$ for 30minutes as an optimum pozzolanic form was mixed with OPC(Ordinary Portland Cement) on a weight basis from 0, 2.5, 5.0, 10, 20, 40%. The cement quality was then assessed by the compressive strength and analysis of XRD(S-Ray Diffraction) and SEM(Scanning Electron Microscope).

  • PDF

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.

Thermally Activated Fly Ash Cement System with Different FA Contents (FA 함량이 다른 열활성 플라이애쉬 시멘트 시스템)

  • Wang, Zihao;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.114-115
    • /
    • 2021
  • In this study, the effects of thermal activation on the compressive strength and water absorption of fly ash-cement systems were studied. The results show that the increase in curing temperature improves the early-age compressive strength and reduces its water absorption.

  • PDF

Thermally activated delayed fluorescence (TADF) from $Sn^{4+}$-porphyrin complexes and their application to organic light emitting diodes - novel pathway for high efficiency electroluminescence

  • Endo, Ayataka;Ogasawara, Mai;Takahashi, Atsushi;Kato, Yoshimine;Adachi, Chihaya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1411-1413
    • /
    • 2008
  • We developed $Sn^{4+}$-porphyrin complexes that show thermally activated delayed fluorescence (TADF). TADF intensities increased with an increase of temperature because of an acceleration of the reverse intersystem crossing from triplet to singlet excited states by heat activation. TADF component provides a novel pathway for high efficiency OLEDs.

  • PDF

Evaluation on Cooling Performance of Thermally Activated Building System by Insulation and Shading Conditions in Apartments (공동주택의 단열 및 차양에 따른 구체축열시스템 냉방성능 평가)

  • Yoo, Mi-Hye;Yeo, Myoung-Souk;Lee, Yu-Ji;Chung, Woong-June;Park, Sang-Hoon;Kim, Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.23 no.2
    • /
    • pp.107-114
    • /
    • 2012
  • Thermally Activated Building System(TABS) is a radiant heating and cooling system which uses structures as thermal storage by embedding pipes in a concrete slab. Using TABS as the cooling system in residential buildings can reduce energy consumption and peak loads. But the ratio of cooling loads handled by TABS is low in the residential buildings which are significantly influenced by outside condition because condensation and over-cooling may occur. However, recent interest on energy-saving buildings is increasing and new residential buildings are expected to be less influenced by outside with high-insulation and shading. In such residential buildings, the heating and cooling loads and the range of load changes reduce. So the ratio of loads handled by TABS can increase. Therefore, this research investigates the cooling performance and energy performance of TABS in the residential buildings with less influence from outside using the simulation.

Characteristic of Thermal Output of Thermally Activated Building System During the Heating Operation According to FDM Analysis (FDM 해석에 의한 구체축열시스템(TABS)의 난방운전시 방열 특성 분석)

  • Lim, Jae-Han;Song, Jin-Hee;Koo, Bo-Kyoung;Song, Seung-Yeong;Senog, Yoon-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • This study is focused on the evaluation of thermal output of TABS (Thermally Activated Building System). The aim of this study is to evaluate TABS in terms of the temperature difference between heating medium supply temperature ($T_s$) and return temperature ($T_r$), thermal output and the surface temperature distribution according to the design flow rate and the design flow temperature. Through the transient heat transfer simulation using temperature calculation using Crank-Nicolson FDM using Physibel Voltra 6.0 W, the temperature difference between $T_s$ and ��$T_r$, thermal output and the surface temperature distribution of specific TABS was calculated and evaluated. The results show that specific thermal output and temperature difference at $60^{\circ}C$ of supply water temperature were about 162 $W/m^2$, $13.6^{\circ}C$ respectively.

Study on the Characteristics of Thermal Output and Thermal Storage in a Thermally Activated Building System with Phase Change Material (PCM을 활용한 구체축열시스템의 축열 및 방열 특성 연구)

  • Lee, Hyunhwa;Lee, Soojin;Song, Jinhee;Kim, Sumin;Lim, Jaehan;Song, Seung-Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.647-653
    • /
    • 2013
  • TABS (Thermally Activated Building System) has recently applied by huge commercial buildings, airports, and convention centers in Europe. TABS provides night-time thermal storage by heating or cooling. The embedded water-based heating and cooling system uses the high thermal inertia of concrete in the building construction, in which a heating or cooling pipe is embedded. The aim of this study is to analyze the thermal storage and thermal output of TABS applied with PCM (Phase Change Material). To achieve this, prototypes of TABS and the thermal properties of various PCMs were investigated. By using the simulation program Physibel Voltra 6.0 W, the thermal storage and thermal output were evaluated according to a heating and cooling operation schedule.