• 제목/요약/키워드: thermal vapor deposition

검색결과 539건 처리시간 0.029초

CH4 농도 변화가 저유전 SiOC(-H) 박막의 유전특성에 미치는 효과 (Effect of CH4 Concentration on the Dielectric Properties of SiOC(-H) Film Deposited by PECVD)

  • 신동희;김종훈;임대순;김찬배
    • 한국재료학회지
    • /
    • 제19권2호
    • /
    • pp.90-94
    • /
    • 2009
  • The development of low-k materials is essential for modern semiconductor processes to reduce the cross-talk, signal delay and capacitance between multiple layers. The effect of the $CH_4$ concentration on the formation of SiOC(-H) films and their dielectric characteristics were investigated. SiOC(-H) thin films were deposited on Si(100)/$SiO_2$/Ti/Pt substrates by plasma-enhanced chemical vapor deposition (PECVD) with $SiH_4$, $CO_2$ and $CH_4$ gas mixtures. After the deposition, the SiOC(-H) thin films were annealed in an Ar atmosphere using rapid thermal annealing (RTA) for 30min. The electrical properties of the SiOC(-H) films were then measured using an impedance analyzer. The dielectric constant decreased as the $CH_4$ concentration of low-k SiOC(-H) thin film increased. The decrease in the dielectric constant was explained in terms of the decrease of the ionic polarization due to the increase of the relative carbon content. The spectrum via Fourier transform infrared (FT-IR) spectroscopy showed a variety of bonding configurations, including Si-O-Si, H-Si-O, Si-$(CH_3)_2$, Si-$CH_3$ and $CH_x$ in the absorbance mode over the range from 650 to $4000\;cm^{-1}$. The results showed that dielectric properties with different $CH_4$ concentrations are closely related to the (Si-$CH_3$)/[(Si-$CH_3$)+(Si-O)] ratio.

Encapsulation of OLEDs Using Multi-Layers Consisting of Digital CVD $Si_3N_4$ and C:N Films

  • 서정한;오재응;서상준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.538-539
    • /
    • 2013
  • 여러 장점으로 인해 OLED는 디스플레이 및 조명 등 적용분야가 넓어지고 있지만, 수분 및 산소에 취약하여 그 수명이 제한되는 단점이 있다. 이를 해결하고자 현재까지는 glass cap을 이용한 encapsulation 기술이 적용되고 있지만, flexible 기판에 적용하지 못하는 문제가 있다. 이러한 문제를 해결하고자 여러 가지 thin film encapsulation 기술이 적용되고 있으나 보다 신뢰성이 높은 기술의 개발이 절실한 때이다. Encapsulation 무기 박막 물질로서 $Si_3N_4$ 박막은 PE-CVD (Plasma Enhanced Chemical Vapor Deposition) 등의 박막 증착법을 사용한 많은 연구가 진행되어, 저온에서의 좋은 품질의 박막 증착이 가능하지만, 100도 이하의 thermal budget을 갖는 OLED Encapsulation에 사용하기에는 충분하지 않았다. CVD 박막의 특성을 더욱 개선하기 위해 최근 ALD (Atomic Layer Deposition) 방법을 통한 $Al_2O_3$ film 증착 방법이 연구되고 있지만, 낮은 증착 속도로 인해 양산에 걸림돌이 되고 있다. 본 연구에서는 또 다른 해결책으로서 Digital CVD 방법을 이용한 양질의 $Si_3N_4$ 박막의 증착을 연구하였다. 이것은 ALD 증착법과 유사하며, 1st step에서 PECVD 방법으로 4~5 ${\AA}$의 얇은 silicon 박막을 증착하고, 2nd step에서 nitrogen plasma를 이용하여 질화 반응을 진행하고, 이러한 cycle을 원하는 두께가 될 때까지 반복적으로 진행된다. 이 때 1 cycle 당 증착속도는 7 ${\AA}$/cycle 정도였다. 최적의 증착 방법과 조건으로 기존의 CVD $Si_3N_4$ 박막 대비 1/5 이하로 pinhole을 최소화 할 수는 있지만 완벽하게 제거하기는 힘든 문제가 있고, 이를 해결하기 위한 개선을 위한 접근 방법이 필요하다고 판단하였다. 본 연구에서는 무기물 박막인 carbon nitride를 이용한 SiN/C:N multilayer 증착 연구를 진행하였다. Fig. 1은 CVD 조건으로 증착된 두께 750 nm SiN film에서 여러 층의 C:N film layer를 삽입했을 때, 38 시간의 85%/$85^{\circ}C$ 가속실험에 따라 OLED의 발광 사진이다. 그림에서 볼 수 있듯이 C:N 층을 삽입하고 또한 그 박막의 수가 증가함에 따라서 OLED에 대한 encapsulation 특성이 크게 개선됨을 확인할 수 있다.

  • PDF

Thermal Stability and Electrical Properties of HfOxNy Gate Dielectrics with TaN Gate Electrode

  • Kim Jeon-Ho;Choi Kyu-Jeong;Seong Nak-Jin;Yoon Soon-Gil;Lee Won-Jae;Kim Jin-dong;Shin Woong-Chul;Ryu Sang-Ouk;Yoon Sung-Min;Yu Byoung-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권3호
    • /
    • pp.34-37
    • /
    • 2003
  • [ $HfO_2$ ] and $HfO_xN_y$ films were deposited by plasma-enhanced chemical vapor deposition using $Hf[OC(CH_3)_3]_4$ as the precursor in the absence of $O_2$. The crystallization temperature of the $HfO_xN_y$ films is higher than that of the $HfO_2$ film. Nitrogen incorporation in $HfO_xN_y$ was confirmed by auger electron spectroscopy analysis. After post deposition annealing (PDA) at 800$\Box$, the EOT increased from 1.34 to 1.6 nm in the $HfO_2$ thin films, whereas the increase of EOT was suppressed to less than 0.02 nm in the $HfO_xN_y$. The leakage current density decreased from 0.18 to 0.012 $A/cm^2$ with increasing PDA temperature in the $HfO_2$ films. But the leakage current density of $HfO_xN_y$ does not vary with increasing PDA temperature because an amorphous $HfO_xN_y$ films suppresses the diffusion of oxygen through the gate dielectric.

초음파분무 MOCVD법에 의한 $Bi_4Ti_3O_{12}$ 박막의 제조와 La과 V의 Co-Substitution 에 의한 효과 (Effects of substitution with La and V in $Bi_4Ti_3O_{12}$ thin film by MOCVD using ultrasonic spraying)

  • 김기현;곽병오;이승엽;이진홍;박병옥
    • 한국결정성장학회지
    • /
    • 제13권6호
    • /
    • pp.272-278
    • /
    • 2003
  • 초음파 분무에 의한 유기금속 화학증착법 (MOCVD)법으로 $Bi_4Ti_3O_{12}$(BIT)와 Bi와 Ti 대신에 La과 V을 동시에 치환시킨 ($Bi_{3.75}La_{0.75})(Ti_{2.97}V_{0.03})O_{12}$ (BLTV)박막을 ITO/glass 기판 위에 증착하였다. 산소 분위기에서 30분 동안 증착한 후, RTA 방식의 직접삽입법으로 열처리를 하였다. 박막은 페로브스카이트상 생성 온도, 미세구조, 전기적 성질에 관해서 조사하였다. XRD(X-Ray diffraction) 측정결과 BLTV 박막의 페로브스카이트상 생성 온도는 약 $600^{\circ}C$로써 BIT의 $650^{\circ}C$보다 더 낮았다. BLTV 박막의 누설전류는 인가전압 1 V에서 $1.52\times10^{-19}$ A/cm^2$로 측정되었다 또한, $650^{\circ}C$에서 증착했을 경우 잔류 분극값이 $5.6\mu$C/$cm^2$, 항전계값 96.5 kV/cm으로 명확한 강유전성을 보이고 있다.

Multicrystalline Silicon Texturing for Large Area CommercialSolar Cell of Low Cost and High Efficiency

  • Dhungel, S.K.;Karunagaran, B.;Kim, Kyung-Hae;Yoo, Jin-Su;SunWoo, H.;Manna, U.;Gangopadhyay, U.;Basu, P.K.;Mangalaraj, D;Yi, J.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.280-284
    • /
    • 2004
  • Multicrystalline silicon wafers were textured in an alkaline bath, basically using sodium hydroxide and in acidic bath, using mainly hydrofluoric acid (HF), nitric acid $(HNO_3)$ and de-ionized water (DIW). Some wafers were also acid polished for the comparative study. Comparison of average reflectance of the samples treated with the new recipe of acidic solution showed average diffuse reflectance less than even 5 percent in the optimized condition. Solar cells were thus fabricated with the samples following the main steps such as phosphorus doping for emitter layer formation, silicon nitride deposition for anti-reflection coating by plasma enhanced chemical vapor deposition (PECVD) and front surface passivation, screen printing metallization, co-firing in rapid thermal processing (RTP) Furnace and laser edge isolation and confirmed >14 % conversion efficiency from the best textured samples. This isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low cost silicon wafers as starting material.

  • PDF

탄소나노튜브를 적용한 나노유체의 비등 열전달계수 (Boiling Heat Transfer Coefficients of Nanofluids Using Carbon Nanotubes)

  • 이요한;정동수
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.35-44
    • /
    • 2009
  • In this study, boiling heat transfer coefficients(HTCs) and critical heat flux(CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nano tubes(CNTs) dispersed at $60^{\circ}C$. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For dispersion of CNTs, polyvinyl pyrrolidone(PVP) is used in distilled water. Pool boiling HTCs are taken from $10kW/m^2$ to critical heat flux for all nanofluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 200% increase at volume concentration of 0.001% CNTs as compared to that of pure water. This is related to the change of surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of heat transfer surface are decreased due to this layer. The thin layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, maintains the nucleate boiling even at very high heat fluxes and reduces the formation of large vapor canopy at near CHF resulting in a significant increase in CHF.

레이저 가공에 의한 비정질 실리콘 박막 태양전지 모듈 제조 (Laser patterning process for a-Si:H single junction module fabrication)

  • 이해석;어영주;이헌민;이돈희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.281-284
    • /
    • 2007
  • Recently, we have developed p-i-n a-Si:H single junction thin film solar cells with RF (13.56MHz) plasma enhanced chemical vapor deposition (PECVD) system, and also successfully fabricated the mini modules ($>300cm^2$), using the laser patterning technique to form an integrated series connection. The efficiency of a mini module was 7.4% ($Area=305cm^2$, Isc=0.25A, Voc=14.74V, FF=62%). To fabricate large area modules, it is important to optimise the integrated series connection, without damaging the cell. We have newly installed the laser patterning equipment that consists of two different lasers, $SHG-YVO_4$ (${\lambda}=0.532{\mu}m$) and YAG (${\lambda}=1.064{\mu}m$). The mini-modules are formed through several scribed lines such as pattern-l (front TCO), pattern-2 (PV layers) and pattern-3 (BR/back contact). However, in the case of pattern-3, a high-energy part of laser shot damaged the textured surface of the front TCO, so that the resistance between the each cells decreases due to an incomplete isolation. In this study, the re-deposition of SnOx from the front TCO, Zn (BR layer) and Al (back contact) on the sidewalls of pattern-3 scribed lines was observed. Moreover, re-crystallization of a-Si:H layers due to thermal damage by laser patterning was evaluated. These cause an increase of a leakage current, result in a low efficiency of module. To optimize a-Si:H single junction thin film modules, a laser beam profile was changed, and its effect on isolation of scribed lines is discussed in this paper.

  • PDF

Fabrication of Hot Electron Based Photovoltaic Systems using Metal-semiconductor Schottky Diode

  • Lee, Young-Keun;Jung, Chan-Ho;Park, Jong-Hyurk;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.305-305
    • /
    • 2010
  • It is known that a pulse of electrons of high kinetic energy (1-3 eV) in metals can be generated with the deposition of external energy to the surface such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not in thermal equilibrium with the metal atoms and are called "hot electrons" The concept of photon energy conversion to hot electron flow was suggested by Eric McFarland and Tang who directly measured the photocurrent on gold thin film of metal-semiconductor ($TiO_2$) Schottky diodes [1]. In order to utilize this scheme, we have fabricated metal-semiconductor Schottky diodes that are made of Pt or Au as a metallic layer, Si or $TiO_2$ as a semiconducting substrate. The Pt/$TiO_2$ and Pt/Si Schottky diodes are made by PECVD (Plasma Enhanced Chemical Vapor Deposition) for $SiO_2$, magnetron sputtering process for $TiO_2$, e-beam evaporation for metallic layers. Metal shadow mask is made for device alignment in device fabrication process. We measured photocurrent on Pt/n-Si diodes under AM1.5G. The incident photon to current conversion efficiency (IPCE) at different wavelengths was measured on the diodes. We also show that the steady-state flow of hot electrons generated from photon absorption can be directly probed with $Pt/TiO_2$ Schottky diodes [2]. We will discuss possible approaches to improve the efficiency of photon energy conversion.

  • PDF

Effect of Plasma Pretreatment on Superconformal Cu Alloy Gap-Filling of Nano-scale Trenches

  • 문학기;이정훈;이수진;윤재홍;김형준;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.53-53
    • /
    • 2011
  • As the dimension of Cu interconnects has continued to reduce, its resistivity is expected to increase at the nanoscale due to increased surface and grain boundary scattering of electrons. To suppress increase of the resistivity in nanoscale interconnects, alloying Cu with other metal elements such as Al, Mn, and Ag is being considered to increase the mean free path of the drifting electrons. The formation of Al alloy with a slight amount of Cu broadly studied in the past. The study of Cu alloy including a very small Al fraction, by contrast, recently began. The formation of Cu-Al alloy is limited in wet chemical bath and was mainly conducted for fundamental studies by sputtering or evaporation system. However, these deposition methods have a limitation in production environment due to poor step coverage in nanoscale Cu metallization. In this work, gap-filling of Cu-Al alloy was conducted by cyclic MOCVD (metal organic chemical vapor deposition), followed by thermal annealing for alloying, which prevented an unwanted chemical reaction between Cu and Al precursors. To achieve filling the Cu-Al alloy into sub-100nm trench without overhang and void formation, furthermore, hydrogen plasma pretreatment of the trench pattern with Ru barrier layer was conducted in order to suppress of Cu nucleation and growth near the entrance area of the nano-scale trench by minimizing adsorption of metal precursors. As a result, superconformal gap-fill of Cu-Al alloy could be achieved successfully in the high aspect ration nanoscale trenches. Examined morphology, microstructure, chemical composition, and electrical properties of superfilled Cu-Al alloy will be discussed in detail.

  • PDF

비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층 (Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells)

  • 이병석;이도권
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.