• Title/Summary/Keyword: thermal rating

Search Result 119, Processing Time 0.026 seconds

Analysis on Ampacity of Overhead Transmission Lines Being Operated

  • Yan, Zhijie;Wang, Yanling;Liang, Likai
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1358-1371
    • /
    • 2017
  • Dynamic thermal rating (DTR) system is an effective method to improve the capacity of existing overhead line. According to the methodology based on CIGRE (International Council on Large Electric systems) standard, ampacity values under steady-state heating balance can be calculated from ambient environmental conditions. In this study, simulation analysis of relations between parameters and ampacity is described as functional dependence, which can provide an effective basis for the design and research of overhead transmission lines. The simulation of ampacity variation in different rating scales is described in this paper, which are determined from real-time meteorological data and conductor state parameters. To test the performance of DTR in different rating scales, capacity improvement and risk level are presented. And the experimental results show that the capacity of transmission line by using DTR has significant improvement, with low probability of risk. The information of this study has an important reference value to the operation management of power grid.

Uncertainty Analysis of Dynamic Thermal Rating of Overhead Transmission Line

  • Zhou, Xing;Wang, Yanling;Zhou, Xiaofeng;Tao, Weihua;Niu, Zhiqiang;Qu, Ailing
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.331-343
    • /
    • 2019
  • Dynamic thermal rating of the overhead transmission lines is affected by many uncertain factors. The ambient temperature, wind speed and wind direction are the main sources of uncertainty. Measurement uncertainty is an important parameter to evaluate the reliability of measurement results. This paper presents the uncertainty analysis based on Monte Carlo. On the basis of establishing the mathematical model and setting the probability density function of the input parameter value, the probability density function of the output value is determined by probability distribution random sampling. Through the calculation and analysis of the transient thermal balance equation and the steady- state thermal balance equation, the steady-state current carrying capacity, the transient current carrying capacity, the standard uncertainty and the probability distribution of the minimum and maximum values of the conductor under 95% confidence interval are obtained. The simulation results indicate that Monte Carlo method can decrease the computational complexity, speed up the calculation, and increase the validity and reliability of the uncertainty evaluation.

A Study on the Analysis of Building Energy Rating considering the Region (지역에 따른 주거용 건물에너지효율등급 분석 연구)

  • Ahn, Byung-Lip;Kim, Chi-Hoon;Kim, Ji-Yeon;Jang, Cheol-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.53-58
    • /
    • 2009
  • Entering in the time of high oil price, seriousness of an energy effect sector has given a huge impact and the importance of energy is growing. Especially, building energy occupying 24% of total demand of energy can be expected to reduce energy demand more than other section. To do this, the Building Energy Rating System is applied and implemented in Apartment houses on Jeju, South and Central region. This system calculates into energy saving rate, and certifies the building energy rating. This study evaluates the energy saving rate and rating and compares the difference in energy savings considering to each region and the thermal performance of the window. In result, the standard of the assessment house which is applied to the build energy rating system is demanded to distinguish the thermal performance of window according to regional variation.

A Study on the Evaluation of Building Energy Rating considering the Region of Apartment Houses (공동주택에서의 지역에 따른 건물에너지 효율등급 평가 연구)

  • Ahn, Byung-Lip;Kim, Chi-Hoon;Kim, Ji-Yeun;Jang, Cheol-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.15-20
    • /
    • 2009
  • Entering in the time of high oil price, seriousness of an energy effect sector has given a huge impact and the importance of energy is growing. Especially, building energy occupying 24% of total demand of energy can be expected to reduce energy demand more than other section. To do this, the Building Energy Rating System is applied and implemented in Apartment houses on Jeju, South and Central region. This system calculates into energy saving rate, and certifies the building energy rating. This study evaluates the energy saving rate and rating and compares the difference in energy savings considering to each region and the thermal performance of the window. In result, the standard of the assessment house which is applied to the build energy rating system is demanded to distinguish the thermal performance of window according to regional variation.

  • PDF

Evaluation of the Energy Efficiency Rating in small office building according to the Thermal Performance of Building Envelope (소규모 업무용 건물의 외피 열성능에 따른 건축물 에너지효율등급 평가 연구)

  • Kim, Sang-A;Hong, Won-Hwa;Park, Hyo-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.65-70
    • /
    • 2012
  • Each country has implemented various environmental policies to prevent natural disasters and destruction of ecosystem caused by global wanning. The republic of Korea also was performed building energy efficiency rating certification system as part of paradigm of 'Low carbon green growth' since 2010. However, the status on the building energy efficiency rating certification system has not been analyzed. In this study, We analyzed the elements affecting the energy efficiency of small office buildings focusing the status and certification cases of the building energy efficiency rating system. As a result, it is judged that thermal performance contribution of the building envelope is not high in the buildings certificated the first grade of the building energy efficiency rating system.

A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring) (전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템)

  • 남석현;이수길;홍진영;김정년;정성환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.

A Study on the Evaluation of Building Energy Rating considering the Insulation Performance of the Building Envelope (외피 열성능에 따른 건물에너지효율등급 분석 연구)

  • Kim, Chi-Hoon;Ahn, Byung-Lip;Kim, Ji-Yeon;Jang, Cheol-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.59-64
    • /
    • 2009
  • According to the building regulation U-value limitation of window is $3.3W/m^2{\cdot}K$ in southern regions, while U-value limitation of wall is $0.35{\sim}0.58W/m^2{\cdot}K$. It means that the energy loss through windows is five times more than it through wall. Therefore, this study analyze how much it has affected building energy rating when the insulation performance of windows and walls is changed by building regulation. In conclusion, in order to obtain 2 rating thermal performance of windows is improved more than 10 percent of U-value limitation and it of wall is improved more than 20 percent. The thermal performance of windows is improved more than 20 percent of U-value limitation and it of wall is improved more than 30 percent to receive 1 rating.

A Study on the Evaluation of Building Energy Rating considering the Insulation Performance of the Window and Wall in Apartment Houses (창호 및 벽체의 단열성능에 따른 건물에너지효율등급 평가 연구 -공동주택을 중심으로-)

  • Kim, Chi-Hoon;Ahn, Byung-Lip;Kim, Ji-Yeun;Jang, Cheol-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.608-613
    • /
    • 2009
  • According to the building regulation U-value limitation of window is $3.3W/m^2{\cdot}K$ in southern regions, while U-value limitation of wall is $0.35{\sim}0.58W/m^2{\cdot}K$. It means that the energy loss through windows is five times more than it through wall. Therefore, this study analyze how much it has affected building energy rating when the insulation performance of windows and walls is changed by building regulation. In conclusion, in order to obtain 2 rating thermal performance of windows is improved more than 10 percent of U-value limitation and it of wall is improved more than 20 percent. The thermal performance of windows is improved more than 20 percent of U-value limitation and it of wall is improved more than 30 percent to receive 1 rating.

  • PDF

Prediction of temperature rise of Electric Switching Device Using CFD-CAD Integrated Analysis (CFD-CAD 통합해석을 이용한 전력기기 온도상승 예측)

  • Ahn, Heui-Sub;Lee, Jong-C.;Choi, Jong-Ung;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.808-810
    • /
    • 2002
  • Higher current-rating and improved thermal performance are being sought for existing medium-voltage vacuum circuit breakers(VCB) in order to meet market needs which require to be compact and downsized. In this paper, thermal performance of medium voltage vacuum circuit breaker was investigated through experiments and numerical analysis. We changed several major parameters of current-rating and heat sink affecting on thermal behaviors in the breaker and observed the results. To predict the temperature distribution in complex three-dimensional (3-D) VCB components and gas, the commercial package was used to simulate conjugate heat transfer. Although some assumptions and simplifications were introduced to simulate the model, results from the computational model were in good agreement with actual temperature rise measurements obtained from experiments.

  • PDF