• 제목/요약/키워드: thermal preference

검색결과 54건 처리시간 0.02초

Indoor Neutral Temperature Range using Temperature and Humidity Perception Assessment

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.29-37
    • /
    • 2016
  • Purpose: Indoor thermal comfort can be identified by combination of temperature, humidity, and air flow, etc. However, most thermal indexes in regard to thermal comfort are temperature dominant since it has been considered as a significant factor affecting to indoor thermal comfort The purposes of this study are to investigate indoor neutral temperature range of young Koreans with humidity perception, and to introduce a neutral temperature for temperature preference as well as temperature sensation in order to define the neutral temperature range chosen by occupants. It could be used as basic data for heating and cooling. Method: 26 research participants volunteered in 7 thermal conditions ($18^{\circ}C$ RH 30%, $18^{\circ}C$ RH 60%, $24^{\circ}C$ RH 30%, $24^{\circ}C$ RH 40%, $24^{\circ}C$ RH 60%, $30^{\circ}C$ RH 30%, $30^{\circ}C$ RH 60%) and completed subjective assessment in regard to temperature/humidity sensation and preference twice per condition in an indoor environmental chamber. Result: In RH 30%, sensation neutral temperature was $25.1^{\circ}C$ for men and $27.0^{\circ}C$ for women, and preference neutral temperature was $25.5^{\circ}C$ for men and $27.8^{\circ}C$ for women. In RH 60%, sensation neutral temperature was $23.6^{\circ}C$ for men and $25.9^{\circ}C$ for women, and preference neutral temperature was $23.4^{\circ}C$ for men and $26.3^{\circ}C$ for women. Neutral temperature increased with increasing relative humidity. Women were sensitive to humidity changes. Men expressed humidity changes as temperature variations. In most conditions, preference neutral temperatures were higher than sensation neutral temperatures, however, the preference neutral temperature for men in humid condition was lower than the sensation neutral temperature.

멸종위기 야생생물 II급 토끼박쥐 Plecotus ognevi의 온도선호도와 동면 전략 (The Relationship between Thermal Preference and Hibernation Strategies in Endangered Plecotus ognevi)

  • 김선숙;최유성;김련
    • 생태와환경
    • /
    • 제51권4호
    • /
    • pp.345-353
    • /
    • 2018
  • 온대지역에 분포하는 박쥐가 생존을 위하여 선택하는 동면은 에너지가 고갈되는 시기에 직면하는 에너지 문제해결을 위한 적응현상이다. 본 연구에서 온대지역에 분포하는 토끼박쥐의 온도선호도와 동면전략(동면기간)에 대한 연구를 수행하였다. 박쥐의 온도선호도와 동면전략과의 연관성을 알아보기 위하여 박쥐의 온도선호도는 동면기간에 영향을 준다는 가설 검증을 하였다. 이를 위하여 토끼박쥐의 분포를 확인하였고 동면처의 환경특성 및 토끼박쥐의 온도선호도를 도출하였다. 또한 토끼박쥐는 외부 최저 기온이 온도선호도보다 낮아지는 시기에 동면처에 도착하여 외부 최저 기온이 온도선호도보다 높아지는 시기에 동면처를 떠날 것으로 예측하였다. 동면중인 토끼박쥐의 평균 체온은 $3.03{\pm}1.30^{\circ}C$(range $0.1{\sim}7.6^{\circ}C$, n=179)로 대기온도 ($T_a$)에 비해 암벽온도 ($T_r$)와 밀접하게 상관되었다. 토끼박쥐는 외부 기온이 온도선호도보다 낮아지는 11월 중순 이후에 동면처에 도착하여 115~120일 동안 동면처에 머물렀다. 또한 외부 기온이 온도선호도보다 높아지는 시기인 3월 중순 이후에 동면처를 떠났다. 본 연구의 결과는 토끼박쥐의 동면기간은 대상 종의 온도선호도와 외부기온과의 상호작용에 의한 것임을 시사하며 또한 대상 종의 온도선호도 및 동면기간 같은 동면전략은 대상 종의 분포 제한 요인으로 작용될 수 있다.

PMV와 음환경의 복합 작용이 실내 환경 지각에 미치는 영향 (Combined Effects of PMV and Acoustics on Indoor Environmental Perception)

  • 양원영
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The purposes of this paper are to investigate effects of indoor thermal environment on acoustical perception and effects of acoustics on indoor thermal perception, and to understand basic human perception on indoor environment. Method: Subjective assessment was performed in an indoor environmental chamber with 24 university students. Thermal conditions with PMV -1.53, 0.03, 1.53, 1.83 were simulated with a VRF system, a humidifier, a dehumidifier, and a ventilation system. Six noise sources - Cafe, Fan, Traffic, Birds, Music, Water- with sound levels of 45, 50, 55, 60 dBA were played for 2 minutes in random order. Temperature sensation, temperature preference, humidity sensation, humidity preference, noisiness, loudness, annoyance, and acoustic preference were assessed using bipolar visual analogue scales. The ANOVA and Turkey's post hoc test were used for data analysis. Result: Thermal environmental perceptions were not altered through 2 minutes noise exposure. Acoustical perceptions were altered by thermal conditions. The results were consistent with previous papers, however, the noise exposure time should be carefully considered for further development.

겨울철 실내 온도에서 내복 착용에 따른 의복 기후와 주관적 감각 (Clothing Microclimate and Subjective Sensations by Wearing Long Johns in Mildly Cold Air)

  • 김명주;이주영
    • 대한가정학회지
    • /
    • 제42권10호
    • /
    • pp.91-104
    • /
    • 2004
  • The purpose of this study was to examine the differences of clothing microclimates and the subjective sensations according to age, gender and clothing weight for $19^{\circ}C$ air temperature. This study was done to gain fundamental data related to saving heating energy and to improve health through wearing underwear (long johns) in lower indoor temperatures. The subjects were divided into four groups (6 young males, 5 young females, 6 old males, 6 old females), and our experiment consisted of three conditions; the first condition was wearing long underwear in $19^{\circ}C$ air (19CUW condition); the second condition was without wearing long underwear in $19^{\circ}C$ air (19C condition); and the third condition was without wearing underwear in $24^{\circ}C$ air (24C condition). The experiment showed that the clothing microclimate temperature and humidity was the lowest in the 19C condition and the highest in the 24C condition irrespective of age and gender. The clothing microclimate in the 19CUW condition was not significantly distinguishable from the other conditions. Clothing microclimate temperature and humidity when the subjects responded thermal comfort was $28\~34^{\circ}C$ and $15\~40\%$RH without any significant difference according to age and gender. For the thermal sensation, the 24C condition was regarded as the warmest environment by the four groups, and the next preference was the 19CUW condition (p<0.001). Young females and old males showed a tendency to feel colder than young males and old females. For the thermal sensation of hands and feet, the young groups felt the warmest in the 24C condition and the coolest in the 19 C condition (p<0.001). However, old males felt neutral for the foot thermal sensation without any significant difference between the three conditions. Old females felt neutral for both the hands and feet thermal sensations without any significant difference between the three conditions. Thermal preference was the highest in the 24C condition for the 4 groups. In the 19CUW condition, for the thermal preference, most young males and females responded 'No change'; on the other hand, mea of the old responded 'Warmer'(p<0.001). It was the 24C condition that the 4 subject groups felt the most thermally comfortable. In the 19CUW condition, over $80\%$ of responses of each group expressed satisfaction and in the 19C condition, over $80\%$ of responses of each group, except young females, expressed satisfaction. In conclusion, in view of the clothing microclimate and subjective sensations, the 24C condition was the condition that gave subjects the least cold stress and the best subjective preference. However, the 19C condition and the 19CUW condition was not such a cold stress as to give healthy subjects a thermal burden.

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • 대한인간공학회지
    • /
    • 제36권3호
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

인조피혁의 촉감 및 선호도 -주관적 평가- (The Sense of Touch and Preference of Man-made Leather -Subjective Evaluation-)

  • 신혜원;이정순
    • 한국의류학회지
    • /
    • 제23권4호
    • /
    • pp.541-550
    • /
    • 1999
  • The purpose of this study is to find out the factors that explain the sense of touch and preference of man-made leather. Date base of descriptors for man-made leather was collected by interviewing 50 consumers, 33 different kinds of commercial man-made leathers(synthetic leather and artificial leather) were assessed subjectively by 605 consumers using the 9-point scale of 34 pairs of bipolar descriptors based on the data base. Subjective ratings were analyzed by principal axis factoring with varimax rota-tion. The sense of touch of man-made leather is explained by five factors ; surface property stretchiness thickness& weight thermal property(warmth & coolness) and moisture property (sticky & clingy). The difference in the sense of touch of man-made leathers is mainly attributable to surface property and stretchiness. And the preference of man-made leathers is mainly attributable to surface property and stretchiness. And the preference of man-made leather is explained by three factors ; surface property stretchiness and quality. Higher preference is found in man-mad leather of better quality touch and softness.

  • PDF

기모가공 조건에 따른 트리코 기포 인조 스웨이드의 태와 물성 (Subjective Hand and Physical Properties of Tricot based Artificial Suede according to Raising Finish)

  • 노의경;오경화
    • 한국의류산업학회지
    • /
    • 제16권1호
    • /
    • pp.153-159
    • /
    • 2014
  • This study evaluates the changes of the subjective hand, preference, comfort and mechanical properties of tricot based artificial suede made from sea-island type micro fibers according to raising condition. The subjective hand and the preference of raised suede for jacket were rated by the 20's and 30's women experts according to raising cycles. Comfort properties were evaluated by air permeability, water vapor transmission, and thermal transmission. Mechanical properties were measured by the KES-FB system. The subjective hand of artificial suede was categorized into three hand factors: smoothness, warmness and thickness. Smoothness, warmness and thickness perception increased with raising cycles which affected hand preference and luxuriousness perception. The thickness and wale density of suede increased with the number of raising. Suede became more compact and less pliable and less stretchable due to increased fabric thickness; in addition, the surface of suede became smoother and compressive since the surface evenness of suede improved with smaller fiber fineness and an increased amount of naps covered the base fabric. Furthermore, water vapor transmission decreased and thermal insulation increased. The best raising conditions for artificial suede was four cycles in which artificial suede was preferred without changes in physical properties.

메카트로닉스 산업용 일반 작업복 개발 - 춘하 및 동절기 작업복 평가를 중심으로 - (The Development of Work Clothes for the Mechatronics Industry through Evaluating Spring-Summer and Winter Suits' Clothing Performance)

  • 박진아
    • 복식
    • /
    • 제61권9호
    • /
    • pp.97-113
    • /
    • 2011
  • To develop the work clothes for the employees in the mechatronics industry in South Korea, a questionnaire survey on many aspects of the work clothes such as type, color, detailed design and function preference of the subject employees has been carried out in the study. The results throughout the survey highlighted certain functions such as extensibility, thermal and air permeability of importance for the work clothing performance. To improve the discomfort caused by some work motions (i.e. squatting down, ascending/descending the stairs, raising arms), more allowances were given to the measurements (i.e. body rise + 2cm and crotch depth + 1cm for squatting down pose; thigh circumference + 1cm and knee circumference + 1cm for ascending/ descending the stairs pose; chest circumference + 5~6cm and jumper length to the level of hip circumference line for raising arms pose) for work clothes patternmaking. The evaluation of the two types of spring/summer and winter work clothes' clothing comfort and wearer mobility suggested certain points to improve the clothing performance (e.g. ventilation slits on the back pleats, arm pits and collar band of the spring/summer suit using net material and lining for the winter suit using quilted thermal materials) and wearer mobility (e.g. pants hem buckles for the easy work motion), which also enabled to fulfill the workers' work clothes design preference.

남성의 내의류 구매 실태 및 디자인 선호도 연구 -20~60대 남성을 중심으로 - (Investigation of Men's Innerwear Purchasing behavior and Preference - For Men Aged between 20's and 60's -)

  • 최진희;박현정
    • 대한가정학회지
    • /
    • 제43권6호
    • /
    • pp.133-144
    • /
    • 2005
  • The purpose of this study was to obtain and offer useful information on innerwear industry through an analysis of consumer purchasing behavior and preference of their between the 20's and 60's. From 310 questionnaires that were distributed, 308 with usable data were coded for further statistical analysis including descriptive statistics(frequency and chi-square test), by using SPSSWIN 10.0. The results were as follows.: It was found that the innerwear for men in their 20's should be developed in an attempt to place greater emphasis on improving functions as an outwear such as impact absorption and protection articulation required for outdoor activities such 3s mountain climbing and in-line skating, rather than the function of thermal insulation. In addition, the development of new materials that improves the hygroscopicity and rapid dryness is needed. For men in their 30's and 40's, the results suggest that innerwear should be designed as thinly as possible without compromising the silhouette of the outwear. For those in their 50's and 60's, it is recommended to intensify the aspects of health and hygiene of the innerwear, while maintaining the function of thermal insulation. Given that a large number of women purchase men's innerwear for their partners, it is important to strengthen the designs and marketing strategy specifically tailored to women's purchasing power.

소음이 실내 온열감과 온열쾌적감에 미치는 영향 (Effects of Noise on Indoor Thermal Sensation and Comfort)

  • 양원영
    • KIEAE Journal
    • /
    • 제17권1호
    • /
    • pp.83-89
    • /
    • 2017
  • Purpose: Thermal sensation or thermal comfort was randomly used in many studies which focused on combined effects of thermal and acoustic environments on human perception. However, thermal sensation and thermal comfort are not synonyms. Thermal comfort is more complex human perception on thermal environment than thermal sensation. This study aims to investigate effects of noise on thermal sensation and thermal comfort separately, and also to investigate effects of temperature on acoustic sensation and comfort. Method: Combined thermal and acoustic configurations were simulated in an indoor environmental chamber. Twenty four participants were exposed to two types of noise (fan and babble) with two noise levels (45 dBA and 60 dBA) for an hour in each thermal condition of PMV-1.53, 0.03, 1.53, 1.83, respectively. Temperature sensation, temperature preference, thermal comfort, noisiness, loudness, annoyance, acoustic comfort, indoor environmental comfort were evaluated in each combined environmental condition. Result: Noise did not affected thermal sensation, but thermal comfort significantly. Temperature had an effect on acoustic comfort significantly, but no effect on noisiness and loudness in overall data analysis. More explicit interactions between thermal condition and noise perception showed only with the noise level of 60 dBA. Impacts of both thermal comfort and acoustic comfort on the indoor environmental comfort were analyzed. In adverse thermal environments, thermal comfort had more impact than acoustic comfort on indoor environmental comfort, and in neutral thermal environments, acoustic comfort had more important than thermal comfort.