• Title/Summary/Keyword: thermal power plant

Search Result 1,088, Processing Time 0.027 seconds

Spatial Variation in Macrobenthic Communities Affected by the Thermal Discharge Volumes of a Nuclear Power Plant on the East Coast of Korea (원자력 발전소의 온배수 배출량 변화에 따른 대형저서동물 군집의 공간 변화)

  • Yu, Ok Hwan;Lee, Hyung-Gon;Lee, Jae-Hac;Kim, Kyung-Tae;Myung, Cheol-Soo;Moon, Hyung Tae;Byun, Ju Young
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.299-312
    • /
    • 2013
  • This study analyzed the species composition and density of a macrobenthic community according to variations in the thermal discharge volumes of a nuclear power plant before, during, and after the shutdown of the nuclear power plant during two periods. In this study, 369 macrobenthic fauna species were collected, and their mean density was 1,712 ind. $m^{-2}$. The number of species and diversity of macrobenthic fauna decreased with distance from the thermal discharge area, regardless of whether the nuclear plant shutdown or not. Many macrobenthic taxa appeared near the thermal discharge area, but polychaetes species were more prominent in outer areas than at the discharge area. The density of macrobenthic fauna decreased with distance from the thermal discharge area during a plant shutdown in the fall of 2011, but increased, except at two sites, near the discharge area in the winter of 2012. Cluster analysis indicated that the spatial distribution of the macrobenthic community changed in areas near the nuclear power plant after a shutdown period; that is, the station group I, in areas near the nuclear power plant, became narrower after the shutdown, but it recovered to previously occupied areas after the nuclear power plant began operating again. Opportunistic species, such as the polychaetes Lumbrineris longifolia (= Scoletoma longifolia) and Mediomastus californiensis, which were present in high densities near thermal discharge areas, decreased after the shutdown but recovered after the plant re-opened. The number of species and diversity of the macrofauna and the density of dominant species showed a significant correlation with temperature, except in winter periods. The results of this study revealed that changes in the amount of thermal discharge before and after the shutdown of a nuclear power plant could exert an influence on the structure of macrobenthic community within the thermal discharge areas depending on the season.

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

A Study on the domestic power plant roof waterproofing system & insulation efficiency (국내 발전소 지붕방수설계 시스템 및 단열 성능에 관한 연구)

  • Chung, Kwang-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • As the development of construction technology and new materials, building requirements has been varied gadually. Comfortable environment and serviceability of production activity and energy conservation are being dealt with very seriously. Recently localization of engineering technology of Power Plant, however, construction materials and domestic technology are being developed forcingly. According to above topics this thes is going to study roof waterproofing, thermal insulation and evaluate adiabatic performance and evaluation of properties of waterproofing materials and energy conservation. The results of studying and evaluating of roof waterproofing, thermal insulation and adiabatic performance of Power Plant are as follows. 1. Sheet waterproofing method is better than that of asphalt waterproofing method in that adaptability of wearhertight, thermal resistant, contraction and expansion. 2. It is required to replace polyurethane or ethylene used as thermal insulation with rock wool which is noncombustible materials. 3. It is recommended to usd outer insulation method than inner insulation method due to superioty of outer insulation method. Efficiency of insulation materials used in power plant is generally good except perlite mortar used in the power plant(YGN 1-2, GRI 1-2).

Heat Pump System Using Heated Effluent of Thermal Power Generation Plant as a Heat Source (해수를 이용한 화력발전소 폐열회수 히트펌프 시스템)

  • Ryou, Y.S.;Kang, Y.K.;Kim, Y.H.;Jang, J.K.;Kim, J.G.;Lee, H.M.;Kang, G.C.;Nah, K.D.;Huh, T.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.190-190
    • /
    • 2011
  • In South Korea the gross generation and heated effluent of power generation plant was 259 TWh and 4.73 billion tons in 2008. And then the waste heat from power generation was 388 TWh. It shows that the efficiency of thermal power generation plant is about 40%. Therefore to reduce $CO_2$ emission from thermal power generation plant, the energy of this heated effluent must be reused to heat buildings or farm facilities. In South Korea horticultural facilities of about 25% are heated in winter season. Total area of greenhouses which are heated is about 13,000 ha. Total heat amount needed to warm greenhouse of 13,000 ha in winter season is only 3.4% of total waste heat from power generation plant. In this study a heat pump system was designed to reuse the waste heat from power generation. Especially new heat exchanger was developed to recover the thermal energy from waste water and this model considered anti-corrosion against sea water and low cost for economic feasibility. This heat recovery system was installed in mango growing greenhouse around thermal power generation plant in Seogwipo-city, Jeju Special Self-Governing Province. The result of preliminary test shows that the heating cost of about 90% is saved as compared to boiler using tax free light oil as a fuel.

  • PDF

A Study on the Heat Transfer Reduction due to the Clinker in the Thermal Poorer Plant (화력발전소에서 용융회가 열전달 감소에 미치는 영향에 관한 연구)

  • Kang, H.C.;Lee, K.W.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 2000
  • This study was conducted for the heat transfer reduction due to the clinker formed in the furnace of the thermal power plant. The thermal properties of clinker such as thermal conductivity, specific heat, density and void fraction were measured. The thermal conductivities of the clinker were ranged $0.32-0.54W/m{\cdot}K$ and the average specific heat and the void fraction were $930J/kg{\cdot}K$ and 0.36 respectively. The thermal resistance of clinker was the greatest among the thermal resistances. It was found that the clinker reduces more than 90% of the heat transfer if the clinker is thicker than 10 cm.

  • PDF

Transient Voltage Analysis of Low-Voltage Source Circuit inn Thermal Power Plant due to Grounding Potential Rise by Lightening (낙뢰침입에 의한 대지전위상승이 발전소 저압전원회로에 미치는 과전압 해석)

  • Yang, Byeong-Mo;Jeong, Jae-Kee;Min, Byeong-Wook;Lee, Jong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1644-1646
    • /
    • 1998
  • High-Smokestacks have been the symbol of the thermal power plant. Those cause the thermal power plant to be damaged by lightening for reaching several hundreds meter. In this paper, we investigated the accident of low-voltage source circuit due to grounding potential rise by lightening via high-smokestack in practically driving power plant, described examination into the cause and the impulse analysis. We analysed the transient voltage by EMTP(ElectroMagnetic Transient Program) via modeling the grounding system of power plant. This theoretical results coincided with practical accidental state. Therefore, it was verified that we could apply the grounding system of power plant and substation with the distribution-circuit analysis(EMTP).

  • PDF

Development of Intelligent Digital Governor System for Steam Turbine Generator in Buk-Cheju Thermal Power Plant (북제주 화력 발전소 스팀 터빈 발전기용 인텔리전트 디지털 조속기 개발)

  • 전일영;하달규;신명철;김윤식
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.608-613
    • /
    • 1999
  • This thesis aims at developing of a digita governor system for the steam turbine generator on the Buk-Cheju Thermal Power Plant of KEPCO. The steam turbine generator of the Buk-Cheju Thermal Power Plant is modelled. As a hardware platform, a triple modular system which is fitted 32-bit microprocessor of Motorola company to perform the digital governor system is used. The parameters of the PID controller algorithm in the speed control block is tuned on the basis of the estimated model.

  • PDF

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

The Study on the Improvement of Environmental Assessment Method through Analysis of Environmental Investigation Results of Taean Thermal Power Plant (환경영향평가와 사후환경조사의 비교에 관한 연구 - 태안화력발전소 사례분석 -)

  • Chun, Sang-Ki;Lee, Sung-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.61-74
    • /
    • 2000
  • This study compares the results of environmental impact assessment with the results of post-environmental investigation, using the case of Taean thermal power plant construction. The atmospheric and water qualities were not greatly changed before and after the construction of the power plant. However, the site of the highest concentration predicted by the atmospheric quality modeling in environmental impact assessment was different from that after operation of 4 power plants. There was also a difference in the diffusion range of thermal discharge water between the measured result(1km) and the predicted value(1.5km) with the model. Thus, environmental impact evaluation should be based on long-term (more than a year) environmental monitoring data. For the modeling of atmospheric quality and numerical thermal discharge water diffusion, appropriate models for each plant should be selected and the numerical modeling should be accompanied by computer simulation, wind tunnel test, etc. Moreover, environmental evaluation should focus more on the degree of impact on surroundings than the prediction of changes in surroundings caused by operation of plants.

  • PDF

Performance Analysis of Air Operated Valve by Thermal Aging (공기구동밸브의 열노화에 따른 성능평가)

  • Lee, Sun-Ki
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.93-98
    • /
    • 2015
  • Nuclear power plants has a number of valves, which are operating at a high temperature-high pressure and radiation environment conditions. Nevertheless, it is important to maintain the reliability of the valves to ensure safe operation of the nuclear power plant. However, the aging of the valves by increasing of years of plant operation and the system transients due to the sudden load change are working the failures of the reliability of the valve. In this paper, we evaluate experimentally the performance change according to the thermal aging of the valve. Results show that the valve stem and the actuator leakages were enlarged by the thermal aging.