• Title/Summary/Keyword: thermal physical properties

Search Result 1,090, Processing Time 0.025 seconds

The Study on the physical Properties of tencel fabrics (텐셀직물의 물리적 특성에 관한 연구)

  • Kwon, Oh Kyung;Kwon, HyunSun;Na, Young-Joo
    • Fashion & Textile Research Journal
    • /
    • v.2 no.2
    • /
    • pp.132-137
    • /
    • 2000
  • This study was carried out to evaluate the distribution of mechanical and thermal properties of 14 sorts of tencel fabrics. Three kinds of cellulosic fabrics such as cotton 100%, cotton/tencel 50/50% and rayon 100% were used to compare with tencel fabrics. Furthermore, for the comparison of thermal properties, these fabrics were repeatedly washed 1, 3, 5, 10, 15 and 20 times respectively. The mechanical properties were measured by the KES-FB system and Thereto Labo II type was employed to measure the thermal properties of warmth retaining and contact warm/cool feeling($q_{max}$). The experimental results were analysed statistically to relate the mechanical and thermal properties. Tencel showed sufficient ability to recover from bending deformation and drapability comparing with other cellulosic fabrics and had a silhouette which goes along with the body.

  • PDF

Effects of Thermal Annealing on Dielectric and Piezoelectric Properties of Pb(Zn, Mg)1/3Nb2/3O3-PbTiO3 System in the Vicinity of Morphotropic Phase Boundary

  • Hyun M. Jang;Lee, Kyu-Mann
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.13-20
    • /
    • 1995
  • Effects of thermal annealing on the dielectric/piezoelectric properties of $Pb(Zn, Mg)_{1/3}Nb_{2/3}O_3-PbTiO_3$ ceramics (PZMNPT) with Zn/Mg=6/4) were examined across the rhombohedral/tetragonal morphotropic phase boundary (MPB). Both the relative dielectric permittivity ($\varepsilon$r)and the piezoelectric constant($d_33$)/electromechanical coupling constant ($k_p$)were increased by thermal annealing ($800^{\circ}$~$900^{\circ}C$) after sintering at $1150^{\circ}C$ for 1 hr. Based on the dielectric analysis using the series mixing model and the concept of a random distribution of the local Curie points, the observed improvements in the dielectric and piezoelectric properties of PZMN-PT were interpreted in terms of the elimination of PbO-rich amorphous intergranular layers(~1nm) induced by thermal annealing. A concrete evidence of the presence of amorphous grain-boundary layers in the unannealed (as-sintered) specimen was obtained by examining the structure of intergranular region using a TEM.

  • PDF

Thermal Fatigue and Wear Properties of High Speed Steel Roll for Hot Strip Mill (열간압연용 고속도공구강롤의 열피로 및 마모특성)

  • 류재화;박종일
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.95-101
    • /
    • 1997
  • The thermal fatigue and wear properties of high speed steel roll which was recently developed were investigated by observing microstructure, by measuring mechanical and physical properties, by conducting thermal fatigue testing, and by measuring the amount of wear in actual mill. High speed steel roll had better thermal fatigue testing, and by measuring the amount of wear in actual mill. High speed steel roll had better thermal fatigue life than high chromium iron roll, which was due to lower carbide content, higher strength, and higher thermal conductivity. The amount of wear of high speed steel roll was nearly the same as that of high chromium iron roll in the first finishing stand, which was due to the oxide formation on the roll surface. However, in the third finishing stand, the wear resistance of high speed steel roll was 2~3 times as good as that of high chromium iron roll because the former had higher hardness at high temperature.

  • PDF

Thermal properties of latent heat storage microcapsule-water slurry

  • Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.807-812
    • /
    • 2015
  • A microcapsule water slurry is a latent heat-storage material having a low melting point. In this study, the thermal properties of a microcapsule water slurry are measured. The physical properties of the test microcapsule water slurry, i.e., thermal conductivity, specific heat, latent heat, and density, are measured, and the results are discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). It is clarified that Eucken's equation can be applied to the estimation of the thermal conductivity of the microcapsule water slurry. Useful correlation equations of the thermal properties of the microcapsule water slurry are proposed in terms of the temperature and concentration ratio of the microcapsule water slurry constituents.

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF

Mechanical and Physical Properties of Roof Tile Prepared from Sugar Cane Fiber

  • Wong on, Jessada;Surin, Prayoon;Apawet, Chaiyaprek;Eidhed, Krittee;montra, Sunate;Aumkongthum, Kaichai;Thumsorn, Supaphorn
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.86-89
    • /
    • 2015
  • Sugar cane, renewable fiber resources, were used for roof tile production. Urea formaldehyde, phenol formaldehyde and isocyanate resin were used as binders in this study. Roof tile specimens with 400 mm wide, 400 mm long and 5 mm thick were prepared by compression molding. Physical and mechanical properties of the specimens were analyzed by water absorption, thickness swelling, thermal conductivity, density, modulus of rupture and modulus of elasticity. From the results, water absorption at 1 and 24 hours was 19-47 % and 38-57 %, respectively. Thickness swell at 24 hours was 15-29%. Thermal conductivity was 0.016, 0.017 and 0.019 W/m.K when using isocyanate, urea formaldehyde and phenol formaldehyde, respectively. Density of the specimens was 770-860 kg/m3. Modulus of rapture was 255-280 MPa. Modulus of elasticity was 5.1-7.6 GPa. Physical and mechanical properties of the specimens indicated that they would be applied for roof tile and construction.

Thermal Behavior and Physical Properties of Low Density Polyethylene/Metallocene Linear Low Density Polyethylene Blends (저밀도 폴리에틸렌/메탈로센 선형 저밀도 폴리에틸렌 블렌드의 열적 거동 및 물성)

  • Kim, Jang-Yup;Hyun, Uk;Lee, Dong-Ho;Noh, Seok-Kyun;Lee, Sang-Won;Huh, Wan-Soo
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.502-507
    • /
    • 2003
  • The thermal and physical properties of low density polyethylene melt-blended with Metallocene linear low density polyethylenes were investigated. Since the Metallocene polyethylenes have similar MW and MWD except m-LLDPE4, it can be said that the thermal behavior and mechanical properties of the blends depend upon the l-octene comonomer content. The melting behavior of LDPE/m-LLDPE1 blends shows two melting peaks with LDPE contents higher than 50%, while the other blends show only one melting peak. It was observed that the blends show higher crystallization temperature and higher crystallinity with lower comonomer content. Initial modulus of a blend exhibited the behavior proportional to the crystallinity and the elongation at break of the blends was increased with increasing the m-LLDPE composition. Melt indices of the blends decreased with increasing the comonomer content of Metallocene LLDPE. Melt Index values of the blends show negative deviation.

Influences of Physical Soil Properties on Drought Severity in the Central Great Plains Based on Satellite Data and a Digital Soil Database (인공위성자료와 디지털 토양자료를 통해 분석한 미중부 대평원 지역 가뭄정도에 미친 물리적 토양특성의 영향)

  • Sunyurp Park
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.6
    • /
    • pp.935-948
    • /
    • 2003
  • The State Soil Geographic (STATSGO) database is a valuable source for assessment of soil properties at a state level. Using GIS techniques, eight physical soil properties were extracted from the database, including available water capacity, clay content, soil depth, slope, depth to water table, drainage, texture, and permeability. The influences of these soil properties on drought severity, which was estimated by NDVI departures from normal, were determined over western-central Kansas. Study results showed that seven soil properties had significant relationships with drought severity with correlation coefficients, ranging from -0.89 to 0.85. Thermal emission signals from the Moderate Resolution Imaging Spectroradiometer (MODIS) had a significant relationship with drought severity expressed by NDVI departure from normal and represented spatial progression of drought over time well. High thermal signals, indicating high soil moisture deficit, emerged in the western region and their spatial distribution changed over time. Different sets of soil factors influenced drought severity among early-drying and late-drying areas.

The Effect of Structural Characteristics of Selected Wool Fabrics on Mechanical and Thermal Properties (직물의 구성인자가 보온성에 미치는 영향)

  • Jun, Byung-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • This study was performed to determine the effect of structural characteristics of selected wool fabrics on mechanical and thermal properties. 52 wool fabrics, including 18 plain woven fabrics and 34 twill and satin woven fabrics were used as samples woven with various weft density for the study. Several physical characteristics such as mechanical properties, keeping warmth ratio of wool fabrics were measured. Data analyses including 1) analysis of tactile and thermal comfort sensation were performed. the following were obtained from the results: The main factors affecting keeping warmth ratio were thickness and bulk density. The keeping warmth ratio of samples increased with increasing thickness and decreasing bulk density of samples. In addition, coefficient of friction of the samples increased with keeping warmth ratio of samples. The above results show that wearing sensation and comfort properties of fabrics are changed depending on the end-use, and thus, above results can be used to manufacture of fabrics for specific end-use with high comfort properties.

  • PDF

Experimental and numerical analysis of new bricks made up of polymer modified-cement using expanded vermiculite

  • Koksal, Fuat;del Coz Diaz, Juan J.;Gencel, Osman;Alvarez Rabanal, Felipe P.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.319-335
    • /
    • 2013
  • In this paper, the properties of the cement mortar modified with styrene acrylic ester copolymer were investigated. Expanded vermiculite as lightweight aggregate was used for making the polymer modified mortar test specimens. To study the effect of polymer-cement ratio and vermiculite-cement ratio on various properties, specimens were prepared by varying the polymer-cement and vermiculite-cement ratios. Tests of physical properties such as density, water absorption, thermal conductivity, three-point flexure and compressive tests were made on the specimens. Furthermore, a coupled thermal-structural finite element model of an entire corner wall was modelled in order to study the best material configuration. The wall is composed by a total of 132 bricks of $120{\times}242{\times}54$ size, joined by means of a contact-bonded model. The use of advanced numerical methods allows us to obtain the optimum material properties. Finally, comparisons of polymer-cement and vermiculite-cement ratios on physical properties are given and the most important conclusions are exposed.