Thermal Behavior and Physical Properties of Low Density Polyethylene/Metallocene Linear Low Density Polyethylene Blends

저밀도 폴리에틸렌/메탈로센 선형 저밀도 폴리에틸렌 블렌드의 열적 거동 및 물성

  • Kim, Jang-Yup (Department of Chemical & Environmental Engineering, Soongsil University) ;
  • Hyun, Uk (Department of Chemical & Environmental Engineering, Soongsil University) ;
  • Lee, Dong-Ho (Department of Polymer Science, Kyungpook National University) ;
  • Noh, Seok-Kyun (School of Chemical Engineering & Technology, Yeoungnam University) ;
  • Lee, Sang-Won (Department of Chemical & Environmental Engineering, Soongsil University) ;
  • Huh, Wan-Soo (Department of Chemical & Environmental Engineering, Soongsil University)
  • 김장엽 (숭실대학교 환경화학공학과) ;
  • 현욱 (숭실대학교 환경화학공학과) ;
  • 이동호 (경북대학교 고분자공학과) ;
  • 노석균 (영남대학교 응용화학공학부) ;
  • 이상원 (숭실대학교 환경화학공학과) ;
  • 허완수 (숭실대학교 환경화학공학과)
  • Published : 2003.09.01

Abstract

The thermal and physical properties of low density polyethylene melt-blended with Metallocene linear low density polyethylenes were investigated. Since the Metallocene polyethylenes have similar MW and MWD except m-LLDPE4, it can be said that the thermal behavior and mechanical properties of the blends depend upon the l-octene comonomer content. The melting behavior of LDPE/m-LLDPE1 blends shows two melting peaks with LDPE contents higher than 50%, while the other blends show only one melting peak. It was observed that the blends show higher crystallization temperature and higher crystallinity with lower comonomer content. Initial modulus of a blend exhibited the behavior proportional to the crystallinity and the elongation at break of the blends was increased with increasing the m-LLDPE composition. Melt indices of the blends decreased with increasing the comonomer content of Metallocene LLDPE. Melt Index values of the blends show negative deviation.

메탈로센 선형 저밀도 폴리에틸렌 (m-LLDPE)과 저밀도 폴리에틸렌 (LDPE)을 용응 블렌딩 방법으로 블렌드를 제조하여 열적 거동 및 물성을 관찰하였다. LDPE/m-LLDPE1 블렌드는 LDPE조성이 50% 이상이면 두 개의 용융 피크가 관찰된 반면 다른 블렌드들은 단일한 용융 피크를 나타내었다. m-LLDPE에서 공단량체 함량이 감소할수록 용융 온도와 상대 결정화도가 증가하였다. 공단량체 함량이 2 wt%인 m-LLDPE1이 초기 탄성률이 가장 높게 관찰되었고, 공단량체 함량이 증가함에 따라 감소하였다. 블렌드에서 조성에 따른 초기 탄성률의 변화는 상대 결정화도의 거동과 유사하게 나타났다. 블렌드의 파괴 신율은 LDPE/m-LLDPE1과 LDPE/m-LLDPE2 블렌드에서 평균값보다 낮은 파괴 신율을 나타내었었다. m-LLDPE2의 용융 지수가 가장 높게 관찰되었고 공단량체 함량이 증가함에 따라 감소하는 경향을 나타내었다.

Keywords

References

  1. J. of Korean Ind. & Eng. Chemistry v.7 S.M.Cho;Y.C.Lee;S.H.Hwang;S.W.Lee;S.K.Kim
  2. Polymer Alloys and Blends L.A.Utracki
  3. Polymer v.24 J.K.Yeo;L.H.Sperling;D.A.Thomas https://doi.org/10.1016/0032-3861(83)90268-9
  4. Makromol. Chem. v.185 Y.S.Lipatov;V.V.Shilov;Y.P.Gomza;G.P.Kovernik;O.P.Grigoreva;L.M.Sergeyeva https://doi.org/10.1002/macp.1984.021850211
  5. Polymer-Polymer Miscibility O.S.Olabisi;M.T.Shaw;L.M.Robeson
  6. Polymer Compatibility and Incompatibility K.Solc
  7. Polymer-Polymer Miscibility O.Olabis;L.M.Robeson;M.T.Show
  8. Polymer Blends and Composites L.H.Sperling;J.A.Manson
  9. Plast. Eng. no.July C.S.Speed
  10. Plast. Rub. Proc. Appl. v.13 S.Haghighat;A.W.Bireley
  11. Tappi J. v.78 A.K.Babel;G.A.Campbell
  12. Plast. Rub. & Comp. Proc. & Appl. v.20 A.C.Y.Wong
  13. Chem. Eng. Res. & Des. v.71 G.M.McNally;C.Bermingham;W.R.Murphy
  14. Pure Appl. Chem. v.57 A.Furuyama;Y.Abana;Y.Ushida;T.Masuda;A Nakajima
  15. Polymer v.23 R.A.Bubeck;H.M.Baker https://doi.org/10.1016/0032-3861(82)90193-8
  16. Mod Plast. Int. v.70 R.D.Leaversuch
  17. Plast. World v.53 J.H.Schut
  18. Tappi J. v.78 J.R.De Garavilla
  19. Hydrocarbon Proc. v.73 A.A.Montagna;J.C.Floyd
  20. Therm. Acta. v.272 L.Woo;M.T.K.Ling;S.P.Westphal https://doi.org/10.1016/0040-6031(95)02621-5
  21. Handbook of Polyolefins Vasale
  22. Macromol. Chem. Phys. v.198 Yong Shao;Shengsheng Liu;Decai Yang https://doi.org/10.1002/macp.1997.021980511
  23. Macromolecules v.8 T.Nishi;T.T.Wang https://doi.org/10.1021/ma60048a040
  24. Doctor thesis, Seoul National University S.Y.Lee
  25. J. Polym. Sci. : Polym. Phys. Ed. v.25 R.Popli;Mandlkern https://doi.org/10.1002/polb.1987.090250301
  26. Macromol. Chem. v.19 A.Rudin https://doi.org/10.1080/00222358008081053
  27. Polymer v.24 R.J.Cella;J.P.Runt;M.M.Coleman https://doi.org/10.1016/0032-3861(83)90077-0
  28. Polym. Eng. & Sci. v.21 M.R.Shishesaz;A.A.Donatelli https://doi.org/10.1002/pen.760211310