Batch tests were carried out to evaluate the thermal treatment of low volatile organic compounds in low-permeability soil. The chemical oxidation by sodium persulfate catalyzed by heat and Fe (II) was evaluated. Enhanced persulfate oxidation of n-decane (C-10), n-dodecane (C-12), n-tetradecane (C-14), n-hexadecane (C-16), and phenanthrene was observed with thermal catalyst, indicating increased sulfate radical production. Slight enhancement of the pollutants oxidation was observed when initial sodium persulfate concentration increased from 5 to 50 g/L. However, the removal efficiency greatly decreased as soil/water ratio increased. It indicates that mass transfer of the pollutants as well as the contact between the pollutants and sulfate radical were inhibited in the presence of solids. In addition, more pollutants can be adsorbed on soil particles and soil oxidant demand increased when soil/water ratio becomes higher. The oxidation of the pollutants was significantly improved when catalyzed by Fe(II). The sodium persulfate consumption increased at the same time because the residual Fe(II) acts as the sulfate radical scavenger.
We proposed AlGaN/GaN high-electron-mobility transistors (HEMTs) using thermal oxidation for NiOx passivation. Auger electron spectroscopy, secondary ion mass spectroscopy, and pulsed I-V were used to study oxidation features. The oxidation process diffused Ni and O into the AlGaN barrier and formed NiOx on the surface. The breakdown voltage of the proposed device was 1520 V while that of the conventional device was 300 V. The gate leakage current of the proposed device was 3.5 ${\mu}A/mm$ and that of the conventional device was 1116.7 ${\mu}A/mm$. The conventional device exhibited similar current in the gate-and-drain-pulsed I-V and its drain-pulsed counterpart. The gate-and-drain-pulsed current of the proposed device was about 56 % of the drain-pulsed current. This indicated that the oxidation process may form deep states having a low emission current, which then suppresses the leakage current. Our results suggest that the proposed process is suitable for achieving high breakdown voltages in the GaN-based devices.
Oxidation behaviors of porous silicon were investigated by the measurement of area of $SiO_2$ vibrational peaks in FT-IR spectra during thermal oxidation of porous silicon at corresponding temperatures. Visible photoluminescent porous silicon samples were obtained from an electrochemical etch of n-type silicon of resistivity between 1-10 ${\Omega}/cm$. The etching solution was prepared by adding an equal volume of pure ethanol to an aqueous solution of HF. The porous silicon was illuminated with a 300 W tungsten lamp for the duration of etch. Etching was carried out as a two-electrode galvanostatic procedure at applied current density of 200 $mA/cm^2$ for 5 min. The porosity of samples prepared was about 80%. After formation of porous silicon, the samples were thermally oxidized at $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, and $400^{\circ}C$, respectively. The growth rate of $SiO_2$ layer of porous silicon was investigated by using FT-IR spectroscopy. The effect of oxidation of porous silicon was presented.
A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of $1{\sim}25{\mu}m$. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.
Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
한국진공학회:학술대회논문집
/
한국진공학회 1999년도 제17회 학술발표회 논문개요집
/
pp.122-122
/
1999
Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.
목적: 다양한 크기의 마이크로그루브가 형성된 티타늄 표면에 열산화 처리를 한 복합 표면의 표면특성을 규명하고, 인간치주인대세포 배양 시 표면에 따른 다양한 세포행동들간 차이와 상관관계를 분석하고자 하였다. 재료 및 방법: Grade II 티타늄 디스크를 시편으로 제작하였다. 포토리소그라피를 이용하여 티타늄 시편의 마이크로그루브 크기를 폭/깊이 $0/0{{\mu}m}$, $15/3.5{{\mu}m}$, $30/10{{\mu}m}$, $60/10{{\mu}m}$로 각각 형성하였다. 평활한 티타늄 표면인 대조군(ST)을 제외한 모든 실험군(ST/TO, Gr15-TO, Gr30-TO, Gr60-TO)에 $700^{\circ}C$에서 3시간동안 열산화 처리하고, 주사현미경 사진을 사용하여 표면특성을 평가하였다. 인간치주인대세포를 배양한 후 BrdU (Bromdeoxyuridine) 실험, 알칼리성 인산가수분해효소 활성 실험, 세포외 칼슘 침착 실험을 통해 세포접착, 세포분화 및 골광화를 평가하였다. 통계분석으로는 일요인분산분석과 피어슨상관관계분석(SPSS version 17.0)을 사용하였다. 결과: 열산화를 동반한 마이크로그루브가 형성된 실험군(Gr15-TO, Gr30-TO, Gr60-TO)들은 평활한 대조군(ST)과 단순 열산화 처리 실험군(ST-TO)에 비하여 BrdU 실험, 알칼리성 인산가수분해효소 활성 실험, 세포 외 칼슘 침착 실험 모두에서 유의하게 증가된 활성도를 나타내었다. 특히, Gr60-TO군은 대조군 및 Gr15-TO, Gr30-TO, Gr60-TO 군 등에 비해 가장 증진된 세포접착 및 골아세포분화/골광화를 나타냈다. 결론: 본 연구의 한계 내에서, 열산화 처리 및 마이크로그루브 복합 티타늄 표면은 골아세포분화에 효과적 방법임이 확인되었다. 본 연구에서 규명 된 적정한 마이크로그루브 크기와 열산화 처리 조건은 마이크로그루브-열산화 복합 표면 티타늄 임플란트 개발의 기초 확립에 기여할 수 있을 것이다.
여러 종류(8종)의 유지로 부터 추출한 불검화물과, 강력한 자동산화억제력이 있다고 알려진 53종의 식물체(농산물 및 생약) 메탄을 추출물을 유지에 첨가한후 $180^{\circ}C$에서 14 혹은 16시간 연속 가열하는 동안 유지의 지방산조성을 측정하여 이들 추출물들이 유지의 고열 가열 산화에 미치는 영향을 연구하였다. 추출된 유지의 불검화물들은 모두 $180^{\circ}C$의 고온 가열산화 조건에서 항산화력을 나타내지 못하였다. 그러나 53종의 농산물 및 생약중에서는 일부 종들은 강력한 가열산화 억제력을 나타내었다. 특히, 대황, 백굴체, 정향 등의 메탄올 추출물은 강력한 가열산화 억제력을 나타내었다. 또한 이들 대황, 백굴체 및 정향의 메탄올 추출물들이, 면실유를 $180^{\circ}C$에서 1일 7시간씩 8일간 가열 처리하는 과정에서 면실유의 linoleic acid 파괴 및 중합체 생성에 미치는 영향을 연구하였다. 이 결과 정향 및 백굴체추출물은 $180^{\circ}C$에서 장기간의 가열조건에서도 linoleic acid 파괴 억제 및 중합체 생성을 억제하는 효과가 크게 나타낸 반면, 대황의 경우에는 장기 가열산화 조건에서 지방산의 파괴에 대한 억제력은 미미하였으나, 중합체 생성억제력은 비교적 양호하였다.
Statement of problem. Titanium is the most important material for biomedical and dental implants because of their high corrosion resistance and good biocompatibility. These beneficial properties are due to a protective passive oxide film that spontaneously forms on the surface. Purpose. The purpose of this study was to evaluate the responses of osteoblast-like cells on different surface treatments on Ti discs. Material and Methods. Group 1 represented the machined surface with no treatment. Group 2 surfaces were sandblasted with $50{\mu}m\;Al_2O_3$ under $5kgf/cm^2$ of pressure. Groups 3 and 4 were sandblasted under the same conditions. The samples were treated on a titanium oxide surface with reactive sputter depositioning and thermal oxidation at $600^{\circ}C$ (Group 3) and $800^{\circ}C$ (Group 4) for one hour in an oxygen environment. The chemical composition and microtopography were analyzed by XRD, XPS, SEM and optical interferometer. The stability of $TiO_2$ layer was studied by petentiodynamic curve. To evaluate cell response, osteoblast extracted from femoral bone marrow of young adult rat were cultured for cell attachment, proliferation and morphology on each titanium discs. Results and Conclusion. The results were as follows : 1. Surface roughness values were, from the lowest to the highest, machined group, $800^{\circ}C$ thermal oxidation group, $600^{\circ}C$ thermal oxidation group and blasted group. The Ra value of blasted group was significantly higher than that of $800^{\circ}C$ thermal oxidation group (P=0.003), which was not different from that of $600^{\circ}C$ thermal oxidation group (P<0.05). 2. The degree of cell attachment was highest in the $600^{\circ}C$ thermal oxidation group after four and eight hours (P<0.05), but after 24 hours, there was no difference among the groups (P>0.05). 3. The level of cell proliferation showed no difference among the groups after one day, three days, and seven days (P>0.05). 4. The morphology and arrangement of the cells varied with surface roughness of the discs.
Park, Cha-Hwan;Lee, Won-Jae;Cho, Kyung-Mox;Park, Ik-Min
Corrosion Science and Technology
/
제2권3호
/
pp.155-160
/
2003
Plasma spraying technique was used to fabricate functionally graded coating (FGC) of NiCrAIY/YSZ 8wt%$Y_2O_3-ZrO_2$ on a Co-base superalloy (HAYNES 188) substrate. Six layers were coated on the substrate for building up compositionally graded architecture. Conventional thermal barrier coating (TBC) of NiCrAIY/SZ with sharp interface was also fabricated. As-coated FGC and TBC samples were exposed at the temperature of $1100^{\circ}C$ for 10, 50, 100 hours in air. Microstructural change of thermally exposed samples was examined. Pores and microcracks were formed in YSZ layer due to evolution of thermal internal stress at high temperature. The amount of pores and microcracks in YSZ layer were increased with increasing exposure time at high temperature. High temperature oxidation of coatings occurred mainly at the NiCrAIY/YSZ interface. In comparison with the case of TBC. the increased area of the NiCrAIY/YSZ interface in FGC is likely to attribute to forming the higher amount of oxides.
휘발성 유기물질은 ground level ozone의 전구체로써 미래 대기오염의 주원인이 될것으로 판단되는 물질이며 구미각국에서는 1990년 초반부터 그리고 국내에서는 최근에 와서 규제가 확정된 물질이다. 대표적인 휘발성 유기물질의 종류와 배출원을 Table 1과 Table 2에 나타내었다.(중략)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.