DOI QR코드

DOI QR Code

Effect of titanium surface microgrooves and thermal oxidation on in vitro osteoblast responses

마이크로그루브 및 열산화 복합 티타늄 표면의 골아세포분화 증진효과

  • Seo, Jin-Ho (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Lee, Richard sungbok (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Ahn, Su-Jin (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Park, Su-Jung (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Lee, Myung-Hyun (Green Ceramics Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Suk Won (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University)
  • 서진호 (강동경희대학교치과병원(생체재료)보철과 경희대학교 치과대학, 치의학전문대학원 치과보철학교실) ;
  • 이성복 (강동경희대학교치과병원(생체재료)보철과 경희대학교 치과대학, 치의학전문대학원 치과보철학교실) ;
  • 안수진 (강동경희대학교치과병원(생체재료)보철과 경희대학교 치과대학, 치의학전문대학원 치과보철학교실) ;
  • 박수정 (강동경희대학교치과병원(생체재료)보철과 경희대학교 치과대학, 치의학전문대학원 치과보철학교실) ;
  • 이명현 (한국세라믹기술원 그린세라믹본부) ;
  • 이석원 (강동경희대학교치과병원(생체재료)보철과 경희대학교 치과대학, 치의학전문대학원 치과보철학교실)
  • Received : 2015.06.18
  • Accepted : 2015.07.15
  • Published : 2015.07.31

Abstract

Purpose: We aimed to investigate the effect of combined various microgrooves and thermal oxidation on the titanium (Ti) and to evaluate various in vitro responses of human periodontal ligament cells (PLCs). Materials and methods: Grade II titanium disks were fabricated. Microgrooves were applied on titanium discs to have $0/0{{\mu}m}$, $15/3.5{{\mu}m}$, $30/10{{\mu}m}$, and $60/10{{\mu}m}$ of respective width/depth by photolithography. Thermal oxidation was performed on the microgrooves of Ti substrata for 3 h at $700^{\circ}C$ in air. The experiments were divided into 3 groups: control group (ST), thermal oxidation group (ST/TO), and combined microgrooves and thermal oxidation group (Gr15-TO, Gr30-TO, Gr60-TO). Surface characterization was performed by field-emission scanning microscopy. Cell adhesion, osteoblastic differentiation, and mineralization were analyzed using the bromodeoxyurdine (BrdU), Alkaline phosphatase (ALP) activity, and extracellular calcium deposition assays, respectively. Statistical analysis was performed using the oneway analysis of variance and Pearson's bivariate correlation analysis (SPSS Version 17.0). Results: In general, the combined microgrooves and thermal oxidation group (Gr15-TO, Gr30-TO, Gr60-TO) showed significantly higher levels compared with the control (ST) or thermal oxidation (ST-TO) groups in the BrdU expression, ALP activity, and extracellular calcium deposition. Gr60-TO group induced highest levels of cell adhesion and osteoblastic differentiation. Conclusion: Within the limitation of this study, we conclude that the Ti surface treatment using combined microgrooves and thermal oxidation is highly effective in inducing the cell adhesion andosteoblastic differentiation. The propose surface is also expected to be effective in inducing rapid and strong osseointegration of Ti oral implants.

목적: 다양한 크기의 마이크로그루브가 형성된 티타늄 표면에 열산화 처리를 한 복합 표면의 표면특성을 규명하고, 인간치주인대세포 배양 시 표면에 따른 다양한 세포행동들간 차이와 상관관계를 분석하고자 하였다. 재료 및 방법: Grade II 티타늄 디스크를 시편으로 제작하였다. 포토리소그라피를 이용하여 티타늄 시편의 마이크로그루브 크기를 폭/깊이 $0/0{{\mu}m}$, $15/3.5{{\mu}m}$, $30/10{{\mu}m}$, $60/10{{\mu}m}$로 각각 형성하였다. 평활한 티타늄 표면인 대조군(ST)을 제외한 모든 실험군(ST/TO, Gr15-TO, Gr30-TO, Gr60-TO)에 $700^{\circ}C$에서 3시간동안 열산화 처리하고, 주사현미경 사진을 사용하여 표면특성을 평가하였다. 인간치주인대세포를 배양한 후 BrdU (Bromdeoxyuridine) 실험, 알칼리성 인산가수분해효소 활성 실험, 세포외 칼슘 침착 실험을 통해 세포접착, 세포분화 및 골광화를 평가하였다. 통계분석으로는 일요인분산분석과 피어슨상관관계분석(SPSS version 17.0)을 사용하였다. 결과: 열산화를 동반한 마이크로그루브가 형성된 실험군(Gr15-TO, Gr30-TO, Gr60-TO)들은 평활한 대조군(ST)과 단순 열산화 처리 실험군(ST-TO)에 비하여 BrdU 실험, 알칼리성 인산가수분해효소 활성 실험, 세포 외 칼슘 침착 실험 모두에서 유의하게 증가된 활성도를 나타내었다. 특히, Gr60-TO군은 대조군 및 Gr15-TO, Gr30-TO, Gr60-TO 군 등에 비해 가장 증진된 세포접착 및 골아세포분화/골광화를 나타냈다. 결론: 본 연구의 한계 내에서, 열산화 처리 및 마이크로그루브 복합 티타늄 표면은 골아세포분화에 효과적 방법임이 확인되었다. 본 연구에서 규명 된 적정한 마이크로그루브 크기와 열산화 처리 조건은 마이크로그루브-열산화 복합 표면 티타늄 임플란트 개발의 기초 확립에 기여할 수 있을 것이다.

Keywords

References

  1. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004; 17:536-43.
  2. Long M, Rack HJ. Titanium alloys in total joint replacement-- a materials science perspective. Biomaterials 1998;19:1621-39. https://doi.org/10.1016/S0142-9612(97)00146-4
  3. Jansen JA, van de Waerden JP, Wolke JG, de Groot K. Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res 1991;25:973-89. https://doi.org/10.1002/jbm.820250805
  4. Gaviria L, Salcido JP, Guda T, Ong JL. Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg 2014;40:50-60. https://doi.org/10.5125/jkaoms.2014.40.2.50
  5. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 1995;29:1567-75. https://doi.org/10.1002/jbm.820291213
  6. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009;20:185-206. https://doi.org/10.1111/j.1600-0501.2009.01777.x
  7. Balasundaram G, Yao C, Webster TJ. $TiO_2$ nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 2008;84:447-53.
  8. Buch F, Albrektsson T, Herbst E. Direct current influence on bone formation in titanium implants. Biomaterials 1984;5:341-6. https://doi.org/10.1016/0142-9612(84)90032-2
  9. Eisenbarth E, Velten D, Schenk-Meuser K, Linez P, Biehl V, Duschner H, Breme J, Hildebrand H. Interactions between cells and titanium surfaces. Biomol Eng 2002;19:243-9. https://doi.org/10.1016/S1389-0344(02)00032-1
  10. Kataoka Y, Tamaki Y, Miyazaki T. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining. Biomed Mater Eng 2011;21:113-21.
  11. Feng B, Chen JY, Qi SK, He L, Zhao JZ, Zhang XD. Characterization of surface oxide films on titanium and bioactivity. J Mater Sci 2002;13:457-64.
  12. Raikar GN, Gregory JC, Ong JL, Lucas LC, Lemons JE, Kawahara D, Nakamura M. Surface characterization of titanium implants. J Vac Sci Technol 1995;13:2633-7. https://doi.org/10.1116/1.579462
  13. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17:137-46. https://doi.org/10.1016/0142-9612(96)85758-9
  14. Garc′la-Alonso MC, Saldana L, Valles G, Gonza′lez-Carrasco JL, Gonza′lez-Cabrero J, Mart′lnez ME, Gil-Garay E, Munuera L. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials 2003;24:19-26. https://doi.org/10.1016/S0142-9612(02)00237-5
  15. Saldana L, Vilaboa N, Valles G, Gonzalez-Cabrero J, Munuera L. Osteoblast response to thermally oxidized Ti6Al4V alloy. J Biomed Mater Res A 2005;73:97-107.
  16. den Braber ET, de Ruijter JE, Smits HT, Ginsel LA, von Recum AF, Jansen JA. Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface microgrooves. Biomaterials 1996;17:1093-9. https://doi.org/10.1016/0142-9612(96)85910-2
  17. Lee SW, Kim SY, Rhyu IC, Chung WY, Leesungbok R, Lee KW. Influence of microgroove dimension on cell behavior of human gingival fibroblasts cultured on titanium substrata. Clin Oral Implants Res 2009;20:56-66. https://doi.org/10.1111/j.1600-0501.2008.01597.x
  18. Zhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, Boyan BD. Osteoblast-like cells are sensitive to submicron-scale surface structure. Clin Oral Implants Res 2006;17:258-64. https://doi.org/10.1111/j.1600-0501.2005.01195.x
  19. Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 2010;31: 5072-82. https://doi.org/10.1016/j.biomaterials.2010.03.014
  20. Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 2011;32:3395-403. https://doi.org/10.1016/j.biomaterials.2011.01.029
  21. Gratzner HG. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 1982;218:474-5. https://doi.org/10.1126/science.7123245
  22. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 1990;143:420-30. https://doi.org/10.1002/jcp.1041430304
  23. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 2003;24:4663-70. https://doi.org/10.1016/S0142-9612(03)00366-1
  24. Lee MH, Oh N, Lee SW, Leesungbok R, Kim SE, Yun YP, Kang JH. Factors influencing osteoblast maturation on microgrooved titanium substrata. Biomaterials 2010;31:3804-15. https://doi.org/10.1016/j.biomaterials.2010.01.117
  25. Lee MH, Kang JH, Lee SW. The effect of surface microgrooves and anodic oxidation on the surface characteristics of titanium and the osteogenic activity of human periodontal ligament cells. Arch Oral Biol 2013;58:59-66. https://doi.org/10.1016/j.archoralbio.2012.05.010
  26. Im BJ, Lee SW, Oh N, Lee MH, Kang JH, Leesungbok R, Lee SC, Ahn SJ, Park JS. Texture direction of combined microgrooves and submicroscale topographies of titanium substrata influence adhesion, proliferation, and differentiation in human primary cells. Arch Oral Biol 2012;57:898-905. https://doi.org/10.1016/j.archoralbio.2011.11.013

Cited by

  1. Promotion of osteoblastic differentiation and osteogenic transcription factor expression on a microgroove titanium surface with immobilized fibronectin or bone sialoprotein II vol.11, pp.3, 2015, https://doi.org/10.1088/1748-6041/11/3/035020