Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.1.001

Synthesis of Vertically Aligned CuO Nanorods by Thermal Oxidation  

Kim, Jimin (Department of Materials Science and Engineering, Chungnam National University)
Jung, Hyuck (Department of Materials Science and Engineering, Chungnam National University)
Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.23, no.1, 2013 , pp. 1-6 More about this Journal
Abstract
A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of $1{\sim}25{\mu}m$. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.
Keywords
copper oxide; nanorod structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Ji and H. Gao, J. Mech. Phys. Solids, 52(9), 1963 (2004).   DOI   ScienceOn
2 J. Jersch and K. Dickmann, Appl. Phys. Lett., 68(6), 868 (1996).   DOI
3 Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee and J. H. Lee, Sens. Actuators, B, 135(1), 298 (2008).   DOI   ScienceOn
4 L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li and T. Yu, Nanotechnology, 20(8), 085203 (2009).   DOI   ScienceOn
5 J. Chen, K. Wang, L. Hartman and W. Zhou, J. Phys. Chem. C, 112(41), 16017 (2008).   DOI   ScienceOn
6 N. D. Hoa, N. V. Quy, H. Jung, D. Kim, H. Kim and S. K. Hong, Sens. Actuators, B, 146(1), 266 (2010).   DOI   ScienceOn
7 Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Appl. Phys. Lett., 84(18), 3654 (2004).   DOI   ScienceOn
8 A. Kolmakov, Y. Zhang, G. Cheng and M. Moskovits, Adv. Mater., 15(12), 997 (2003).   DOI   ScienceOn
9 C. Y. Lu, S. P. Chang, S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. Z. Chiou and I. C. Chen, IEEE Sens. J., 9(4), 485 (2009).   DOI   ScienceOn
10 S. Anandan, X. Wen and S. Yang, Mater. Chem. Phys., 93(1), 35 (2005).   DOI   ScienceOn
11 M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater., 4, 455 (2005).   DOI   ScienceOn
12 J. B. Baxter and E. S. Aydil, Appl. Phys. Lett., 86(5), 053114 (2005).   DOI   ScienceOn
13 X. Wang and C. S. Ozkan, Nano Lett., 8(2), 398 (2008).   DOI   ScienceOn
14 G. J. Zhang, L. Zhang, M. J. Huang, Z. H. H. Luo, G. K. I. Tay, E. J. A. Lim, T. G. Kang and Y. Chen, Sens. Actuators, B, 146(1), 138 (2010).   DOI   ScienceOn
15 Z. Fang and S. O. Kelley, Anal. Chem., 81(2), 612 (2009).   DOI   ScienceOn
16 J. I. Hahm and C. M. Lieber, Nano Lett., 4(1), 51 (2004).   DOI   ScienceOn
17 R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4(5), 89 (1964).   DOI
18 G. Gu, B. Zheng, W. Q. Han, S. Roth and J. Liu, Nano Lett., 2(8), 849 (2002).   DOI   ScienceOn
19 S. Feng and R. Xu, Acc. Chem. Res., 34(3), 239 (2001).   DOI   ScienceOn
20 J. B. Reitz and E. I. Solomon, J. Am. Chem. Soc., 120(44), 11467 (1998).   DOI   ScienceOn
21 X. Jiang, T. Herricks and Y. Xia, Nano Lett., 2(12), 1333 (2002).   DOI   ScienceOn