• 제목/요약/키워드: thermal modeling

검색결과 975건 처리시간 0.031초

Modeling of Electrolyte Thermal Noise in Electrolyte-Oxide-Semiconductor Field-Effect Transistors

  • Park, Chan Hyeong;Chung, In-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권1호
    • /
    • pp.106-111
    • /
    • 2016
  • Thermal noise generated in the electrolyte is modeled for the electrolyte-oxide-semiconductor field-effect transistors. Two noise sources contribute to output noise currents. One is the thermal noise generated in the bulk electrolyte region, and the other is the thermal noise from the double-layer region at the electrolyte-oxide interface. By employing two slightly-different equivalent circuits for two noise current sources, the power spectral density of output noise current is calculated. From the modeling and simulated results, the bulk electrolyte thermal noise dominates the double-layer thermal noise. Electrolyte thermal noise are computed for three different concentrations of NaCl electrolyte. The derived formulas give a good agreement with the published experimental data.

Parameterized Simulation Program with Integrated Circuit Emphasis Modeling of Two-level Microbolometer

  • Han, Seung-Oh;Chun, Chang-Hwan;Han, Chang-Suk;Park, Seung-Man
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.270-274
    • /
    • 2011
  • This paper presents a parameterized simulation program with integrated circuit emphasis (SPICE) model of a two-level microbolometer based on negative-temperature-coefficient thin films, such as vanadium oxide or amorphous silicon. The proposed modeling begins from the electric-thermal analogy and is realized on the SPICE modeling environment. The model consists of parametric components whose parameters are material properties and physical dimensions, and can be used for the fast design study, as well as for the co-design with the readout integrated circuit. The developed model was verified by comparing the obtained results with those from finite element method simulations for three design cases. The thermal conductance and the thermal capacity, key performance parameters of a microbolometer, showed the average difference of only 4.77% and 8.65%, respectively.

화학기계적 연마 프로세스의 동적 열전달 모델링 연구 (A Dynamic Thermal Modeling of Chemical Mechanical Polishing Process)

  • 석종원
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.617-623
    • /
    • 2004
  • This paper describes a dynamic thermal model for a representative dual axis rotational Chemical-Mechanical Polishing (CMP) tool. The model is one-dimensional but configured in the two-dimensional space and consists of three sub-models (pad, wafer and slurry fluid), with the first and the second that are time-dependent heat conduction-convection models with linear stationary (wafer) and nonlinear moving (pad) boundary conditions, and the last one that is a heat transport-convection model (slurry fluid). The modeling approach is validated by comparing the simulation results with available experimental data.

CNC 선반의 열적 거동 해석 (Thermal Behavior Analysis of a CNC Lathe)

  • 안경기;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.778-783
    • /
    • 1994
  • In operating automated manufacturing system, the long term stability and reliability of NC machine tools become most critical issues. Especially the machining accuracy is dominated by the thermal deformation of machine tools which remains still unsolved and causes troubles in manufacturing operations. Although researches have been carried out on the thermal behavior of a machine tools to minimize or control the thermal deformation of machine tools, the computer models for an analysis of the thermal behacior in machine tools has yet to appear in the open literature. The object of the paper is to present a method of modeling the thermal behavior of a machine tool. The method will make use of finite elements ad be capable of modeling whole machine structures as well as of heat generation processes in the kinematic system components. And temperature distributions and thermal deformations of a CNC lathe are analyzed using the finite element method and are compared with those measured in practice.

  • PDF

Thermal Fluid Mixing Behavior during Medium Break LOCA in Evaluation of Pressurized Thermal Shock

  • Jung, Jae-Won;Bang, Young-Seok;Seul, Kwang-Won;Kim, Hho-Jung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.635-640
    • /
    • 1998
  • Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of Thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing.

  • PDF

EFFICIENT THERMAL MODELING IN DEVELOPMENT OF A SPACEBORNE ELECTRONIC EQUIPMENT

  • Kim Jung-Hoon;Koo Ja-Chun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.270-273
    • /
    • 2004
  • The initial thermal analysis needs to be fast and efficient to reduce the feedback time for the optimal electronic equipment designing. In this study, a thermal model is developed by using power consumption measurement values of each functional breadboard, that is, semi-empirical power dissipation method. In modeling heat dissipated EEE parts, power dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board, and is called surface heat model. The application of these methods is performed in the development of a command and telemetry unit (CTU) for a geostationary satellite. Finally, the thermal cycling test is performed to verify the applied thermal analysis methods.

  • PDF

펄스 모드로 작동하는 증기냉각 전류 도입선에 관한 연구 (Investigation on vapor-cooled current leads operating in pulse mode)

  • 인세환;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.66-72
    • /
    • 2002
  • This paper describes numerical modeling for thermal characteristic of vapor-cooled current leads under pulse operation. The transient thermal analysis considers the temperature difference between a helium gas (low and a copper lead and temperature dependent properties of helium gas, copper and stainless steel. This numerical modeling was compensated and validated by an experiment with commercially available 100 A vapor-cooled current leads. A proper overloading factor was suggested for the current leads under pulse operation through this modeling, which can significantly reduce heat input to a cryostat.

CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석 (Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation)

  • 심창휘;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.