• 제목/요약/키워드: thermal low

검색결과 4,920건 처리시간 0.036초

Transparent Sol-Gel Hybrid Dielectric Material Coatings for Low k Passivation Layer

  • Yang, Seung-Cheol;Oh, Ji-Hoon;Kwak, Seung-Yeon;Bae, Byeong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1453-1456
    • /
    • 2009
  • Transparent sol-gel hybrid dielectric material (hybrimer) coating films were fabricated by spin coating and photo or thermal curing of sol-gel derived oligosiloxane resins. Hybrimer coating films are suitable as the passivation layer of TFT in AMLCD due to low dielectric constant, small loss tangent, low leakage current density, high transmittance and thermal stability.

  • PDF

저밀도 폴리에틸렌의 결정화도에 대한 저온 열처리 효과: 수소 핵자기공명 연구 (Effect of Low-temperature Thermal Treatment on Degree of Crystallinity of a Low Density Polyethylene: $^{1}H$ Nuclear Magnetic Resonance Study)

  • 이창훈;최재곤
    • Elastomers and Composites
    • /
    • 제43권4호
    • /
    • pp.259-263
    • /
    • 2008
  • 저밀도 폴리에틸렌에 대한 장시간 저온 열처리가 저밀도 폴리에틸렌 고분자의 결정화도에 미치는 효과를 고체 수소 핵자기공명을 이용하여 연구하였다. 장시간 열처리는 첫째, 저밀도 폴리에틸렌의 색깔을 엷은 노란색으로 변하게 하였고 둘째, 저밀도폴리에틸렌에서 수소 핵의 스핀-스핀 및 스핀-격자 완화시간을 증가시켰으며, 셋째, 결정화도를 줄어들게 하였다. 먼저, $T_1$의 증가를 저밀도폴리에틸렌의 전체 스핀-격자 완화시간을 결정하는 비정질 영역의 부피 감소에 의한 것이거나 분자간 가교나 수소결합에 의한 특정 분자 운동 성분의 느려짐에 의해 발생하는 것으로 고려하였다. 하지만 결정화도의 감소는 열처리에 의한 비정질 영역의 감소를 의미하므로 전자와는 배치되었다. 따라서 $T_1$의 증가는 후자에 의한 결과임을 알 수 있었다.

Proposal of Potted Inductor with Enhanced Thermal Transfer for High Power Boost Converter in HEVs

  • You, Bong-Gi;Ko, Jeong-Min;Kim, Jun-Hyung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1075-1080
    • /
    • 2015
  • A hybrid electric vehicle (HEV) powertrain has more than one energy source including a high-voltage electric battery. However, for a high voltage electric battery, the average current is relatively low for a given power level. Introduced to increase the voltage of a HEV battery, a compact, high-efficiency boost converter, sometimes called a step-up converter, is a dc-dc converter with an output voltage greater than its input voltage. The inductor occupies more than 30% of the total converter volume making it difficult to get high power density. The inductor should have the characteristics of good thermal stability, low weight, low losses and low EMI. In this paper, Mega Flux® was selected as the core material among potential core candidates. Different structured inductors with Mega Flux® were fabricated to compare the performance between the conventional air cooled and proposed potting structure. The proposed inductor has reduced the weight by 75% from 8.8kg to 2.18kg and the power density was increased from 15.6W/cc to 56.4W/cc compared with conventional inductor. To optimize the performance of proposed inductor, the potting materials with various thermal conductivities were investigated. Silicone with alumina was chosen as potting materials due to the high thermo-stable properties. The proposed inductors used potting material with thermal conductivities of 0.7W/m·K, 1.0W/m·K and 1.6W/m·K to analyze the thermal performance. Simulations of the proposed inductor were fulfilled in terms of magnetic flux saturation, leakage flux and temperature rise. The temperature rise and power efficiency were measured with the 40kW boost converter. Experimental results show that the proposed inductor reached the temperature saturation of 107℃ in 20 minutes. On the other hand, the temperature of conventional inductor rose by 138℃ without saturation. And the effect of thermal conductivity was verified as the highest thermal conductivity of potting materials leads to the lowest temperature saturations.

Thermo-electrical properties of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Supriya, N.
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.25-35
    • /
    • 2017
  • The aim of the work was to investigate the thermo-electrical properties of low cost and rapidly produced randomly oriented carbon/carbon (C/C) composite. The composite body was fabricated by combining the high-pressure hot-pressing (HP) method with the low-pressure impregnation thermosetting carbonization (ITC) method. After the ITC method step selected samples were graphitized at $3000^{\circ}C$. Detailed characterization of the samples' physical properties and thermal properties, including thermal diffusivity, thermal conductivity, specific heat and coefficient of thermal expansion, was carried out. Additionally, direct current (DC) electrical conductivity in both the in-plane and through-plane directions was evaluated. The results indicated that after graphitization the specimens had excellent carbon purity (99.9 %) as compared to that after carbonization (98.1). The results further showed an increasing trend in thermal conductivity with temperature for the carbonized samples and a decreasing trend in thermal conductivity with temperature for graphitized samples. The influence of the thickness of the test specimen on the thermal conductivity was found to be negligible. Further, all of the specimens after graphitization displayed an enormous increase in electrical conductivity (from 190 to 565 and 595 to 1180 S/cm in the through-plane and in-plane directions, respectively).

Thermal dehydration tests of FLiNaK salt for thermal-hydraulic experiments

  • Shuai Che;Sheng Zhang;Adam Burak;Xiaodong Sun
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1091-1099
    • /
    • 2024
  • Fluoride-salt-cooled High-temperature Reactor (FHR) is a promising nuclear reactor technology. Among many challenges presented by the molten fluoride salts is the corrosion of salt-facing structural components. Higher moisture contents, in the FLiNaK (LiF-NaF-KF, 46.5-11.5-42 mol%) salt, aggravate intergranular corrosion and pitting for the given alloys. Therefore, several thermal dehydration tests of FLiNaK salt were performed with a batch size suitable for thermal-hydraulic experiments. Thermogravimetric Analysis (TGA) was performed for the three constituent fluoride salts individually. Preliminary thermal dehydration plans were then proposed for NaF and KF salts based on the TGA curves. However, the dehydration process may not be required for LiF since its low mass loss (<1.3 wt%). To evaluate the performance of these thermal dehydration plans, a batch-scale salt dehydration test facility was designed and constructed. The preliminary thermal dehydration plans were tested by varying the heating rates, target temperature, and holding time. The sample mass loss data showed that the high temperatures (>500 ℃) were necessary to remove a significant amount of moisture (>1 wt%) from NaF salt, while relatively low temperatures (around 300 ℃) with a long holding time (>10 h) were sufficient to remove most of the moisture from KF salt.

Experimental study on the cryogenic thermal storage unit (TSU) below -70 ℃

  • Byeongchang Byeon;Kyoung Joong Kim;Sangkwon Jeong;Dong min Kim;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Seong Woo Lee;Keun Tae Lee
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권1호
    • /
    • pp.20-24
    • /
    • 2024
  • Over the past four years, as the COVID-19 pandemic has struck the world, cold chain of COVID-19 vaccination has become a hot topic. In order to overcome the pandemic situation, it is necessary to establish a cold chain that maintains a low-temperature environment below approximately 203K (-70℃), which is the appropriate storage temperature for vaccines, from vaccine suppliers to local hospitals. Usually, cryocoolers are used to maintain low temperatures, but it is difficult for small-scale local distribution to have cryocooler due to budget and power supply issues. Accordingly, in this paper, a cryogenic TSU (Thermal storage unit) system for vaccination cold chain is designed that can maintain low temperatures below -70℃C for a long time without using a cryocooler. The performance of the TSU system according to the energy storage material for using as TSU is experimentally evaluated. In the experiments, four types of cold storage materials were used: 20% DMSO aqueous solution, 30% DMSO aqueous solution, paraffin wax, and tofu. Prior to the experiment, the specific heat of the cold storage materials at low temperature were measured. Through this, the thermal diffusivity of the materials was calculated, and paraffin wax had the lowest value. As a result of the TSU system's low-temperature maintenance test, paraffin wax showed the best low-temperature maintenance performance. And it recorded a low-temperature maintenance time that was about 24% longer than other materials. As a result of analyzing the temperature trend by location within the TSU system, it was observed that heat intrusion from the outside was not well transmitted to the low temperature area due to the low thermal conductivity of paraffin wax. Therefore, in the TSU system for vaccine storage, it was experimentally verified that the lower the thermal diffusivity of the cold storage material, the better low temperature maintenance performance.

실험실 규모 배기관에서 요소수의 저온 열분해 (Thermal decomposition of urea solution at low temperature in a lab-scaled exhaust pipe)

  • 구건우;박홍민;박형선;김태훈;홍정구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.235-236
    • /
    • 2014
  • An experimental study has been carried out to investigate a thermal decomposition of urea solution at relative low temperature with a lab-scaled exhaust pipe. The conversion efficiency of reductant considered with both ammonia and HNCO related with the urea injection quantity, inflow gas velocity and temperature. The conversion efficiency of ammonia was larger than that of HNCO under all experimental conditions unlike the theoretical thermolysis reaction.

  • PDF

고출력 레이저를 이용한 세라믹 재료의 용접 실험 (Experiments on Welding of Ceramics by Use of High Power Laser)

  • 변철웅
    • Journal of Welding and Joining
    • /
    • 제12권2호
    • /
    • pp.39-48
    • /
    • 1994
  • In comparison to the conventional brazing, laser welding of ceramics has advantages of direct bonding without filler material, which causes the thermal stress due to the differences of thermal expansion coefficients. In pulse-mode, laser welding of dispersion ceramic having high thermal resistance is possible at relatively low preheating temperature of $1300^{\circ}C$ In CW-mode, alumina can be welded at high preheating temperature $1500^{\circ}C$ under the condition of low feed rate of 500 mm/min, respectively. Further studies on developing mechanism of pores in the bead during laser welding of ceramics is required.

  • PDF

유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성 (Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects)

  • 하정수;고승기;옹장우
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

커튼월 스팬드럴용 진공유리의 열파손에 대한 비교실험 (A Comparative Experiment on Thermal Stress Failure of Vacuum Glazing applied in Curtain Wall at Spandrel area)

  • 김승철;윤종호;신우철;안정혁
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.121-128
    • /
    • 2016
  • Purpose: The vacuum glazing should constantly retain the gap in vacuum state to maintain high thermal performance. To do so, pillars are used to prevent the glazing from clinging to each other by the atmospheric pressure and therefore surface of the vacuum glazing is consistently affected by residual stress. The vacuum glazing could be applied to curtain wall systems at spandrel area to fulfill a rigorous domestic standard on U-value of the external wall. However, this can lead to high glazing temperature increase by heat concentration at a back panel and finally thermal stress breakage. This study experimentally determined weakness of the vacuum glazing systems on the thermal stress breakage and investigated effect of the residual stress. Method: The experiment first built two scale-down mock-up facilities that replicate the spandrel area in curtain wall, and then installed single low-e glass and vacuum glazing respectively. The two mock-up facilities were exposed to outside to induce the thermal stress breakage. Result: The experiment showed that the temperature occurred the thermal stress breakage was $114.4^{\circ}C$ for the single low-e glass and $118.9^{\circ}C$ for the vacuum glazing respectively. The result also showed the vacuum glazing reached the critical point earlier than the single low-e glass, which means that the vacuum glazing has high potential to occur the thermal shock breakage. In addition, the small temperature difference between two glazing indicates that the residual stress scarcely affects breakage of the vacuum glazing.