• Title/Summary/Keyword: thermal loadings

Search Result 108, Processing Time 0.023 seconds

Characteristic Accelerated Aging Assessment for Coolant Rubber Hose of Automotive Radiator (자동차 냉각기 고무호스의 가속 노화거동 평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Kang, Bong-Sung;Shin, Sei-Moon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.27-31
    • /
    • 2006
  • Rubber hoses for automobile radiators are apt to degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. The aging behaviors of the skin part of the hoses due to thermo-oxidative and electro-chemical stresses were experimentally analyzed. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain as the aging time and temperature were large. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens influenced by electro-chemical degradation (ECD) test increased, whereas their failure strain and IRHD hardness decreased. The hardness decreased further as the test site on the hose skin approached to the negative pole.

  • PDF

Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings

  • Belbachir, Nasrine;Draich, Kada;Bousahla, Abdelmoumen Anis;Bourada, Mohamed;Tounsi, Abdelouahed;Mohammadimehr, M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.81-92
    • /
    • 2019
  • The present paper addresses a refined plate theoryin order to describe the response of anti-symmetric cross-ply laminated plates subjected to a uniformlydistributed nonlinear thermo-mechanical loading. In the present theory, the undetermined integral terms are used and the variables number is reduced to four instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors isavoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stressesare compared with those of classical, first-order, higher-order and trigonometricshear theories reported in the literature.

Enhanced Crystallization of Bisphenol-A Polycarbonate by Organoclay in the Presence of Sulfonated Polystyrene Ionomers

  • Govindaiah, Patakamuri;Lee, Jung-Min;Lee, Seung-Mo;Kim, Jung-Hyun;Subramani, Sankaraiah
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.842-849
    • /
    • 2009
  • Polycarbonate (PC)/sulfonated polystyrene (SPS) ionomer/organoclay nanocomposites were prepared by a solution intercalation process using the SPS ionomer as a compatibilizer. The effect of an organoclay on the melt crystallization behavior of the ionomer compatibilized PC were examined by differential scanning calorimetry (DSC). The melt crystallization behavior of PC was dependent on the extent of organoclay dispersion. The effect of the ionomer loading and cation size on intercalation/exfoliation efficiency of the organoclay in PC/SPS ionomer matrix was also studied using wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Dispersion of the organically modified clay in the polymer matrix improved with increasing ionomer compatibilizer loadings and cation size. The SPS ionomer compatibilized PC/organoclay nanocomposite showed enhanced melt crystallization compared to the SPS ionomer/PC blend. Well dispersed organoclay nanocomposites showed better crystallization than the poorly dispersed clay nanocomposites. These nanocomposites also showed better thermal stability than the SPS ionomer/PC blend.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

Estimation of radionuclides leaching characteristics in different sized geopolymer waste forms with simulated spent ion-exchange resin

  • Younglim Shin;Byoungkwan Kim;Jaehyuk Kang;Hyun-min Ma;Wooyong Um
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3617-3627
    • /
    • 2023
  • This study presents a method to solidify spent ion-exchange resin (IER) in a metakaolin-based geopolymer and shows results of mechanical strength, immersion, leaching, irradiation, and thermal cycling tests for waste acceptance criteria (WAC) to repository. The geopolymer waste form with 20 wt% of simulated spent IER met the WAC in South Korea (ROK), and the leaching tests of various sized-waste forms up to 15.0 × 30.0 cm and waste loadings up to 20 wt% for 1-5 d and 1-90 d achieved a leachability index, Li > 6. In a leaching test for 5 d, the cumulative fraction leached (CFL) for Cs, which leached the most, was linearly correlated with the square root of leaching time for all waste forms, and Li increased as the size of the waste form increased. The CFL was also correlated with elapsed time in the 90 d leaching test. The correlations among CFL, time, and volume-to-surface area ratio of waste forms used to estimate the Li of Cs of a 200-L sized geopolymer with 15 wt% IER showed the Li values as 14.73 (5 d) and 17.71 (90 d), respectively, indicating that the large-sized geopolymer waste form met the WAC.

Modeling of Differential Shrinkage Equivalent Temperature Difference for Concrete Pavement Slabs (콘크리트 포장 슬래브 부등 건조수축 등가 온도차이의 모형화)

  • Lim, Jin-Sun;Choi, Ki-Hyo;Lee, Chang-Joon;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.59-68
    • /
    • 2009
  • Torsional behavior of concrete pavement slabs due to temperature and moisture effects is constrained by self weight and friction etc, and causes stress as the result. The stress due to humidity variation in the slab is difficult to calculate while that due to temperature variation can easily be calculated by a commercial structural analysis program. Thus, the slab behavior can be predicted more accurately if the humidity effect is converted to equivalent temperature and is used as an input of structural analysis. In this study, a concrete pavement slab was constructed and strains of the slab due to environmental loadings were measured for long-term period. Thermal strains were subtracted from the measured strains by using thermal expansion coefficient of the concrete measured in a laboratory. Shrinkage strains, the remained strains, was supposed as additional thermal strains to calculate imaginary temperature with equivalent effect of the shrinkage by dividing the shrinkage with the thermal expansion coefficient. An existing shrinkage model was modified by considering the self weight and friction to be used in another model which can convert differential shrinkage between top and bottom of the slab to equivalent temperature difference. Addition research efforts on tensile stress reduction according to steady increase in the compressive strains are warranted for more accurate stress calculation.

  • PDF

Numerical Simulation on the Behavior of Air Bubble Discharging into a Water Pool through a Sparger without Load Reduction Ring (하중저감 링이 없는 증기분사기를 통해 수조로 방출되는 기포 거동에 대한 수치해석)

  • 김환열;배윤영;송진호;김희동
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.259-266
    • /
    • 2003
  • Load reduction ring (LRR) was installed on the ABB-Atom sparger to reduce the oscillatory loadings due to the air bubble clouds in the water pool in case of safety relief system operations. In order to investigate the effect of LRR on the pressure field, a numerical simulation on the behavior of air bubble clouds discharging into a water pool through a ABB-Atom sparser without LRR was performed by using a commercial thermal hydraulic analysis code, FLUENT 4.5. Among the multi-phase models contained in the code, the VOF (Volume Of Fluid) model was used to simulate the interface of water, air and steam flows. By comparing the analysis results with the previous ones, the load reduction ring has an effect on reducing the oscillatory loads at the wall. It also includes the effect of air mass and inlet boundary conditions of the pipe on the pressure oscillations at the wall.

Application of the WSGGM for arbitrary gas mixtures of water vapor and carbon dioxide (임의 성분비로 구성된 수증기-이산화탄소 혼합가스에 대한 회색가스가중합법의 적용 연구)

  • Park, Won-Hee;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • The weighted sum of gray gas model(WSGGM) is applied to arbitrary mixtures of CO$_2$ and H$_2$0 gases. To evaluate this model, the spectral and total intensities are obtained for two different problem types. One has uniform, parabolic and boundary layer type temperature profiles with uniform partial pressure, and the other has nonuniform partial pressure and temperature profile. The results obtained from the two different problem types show fairly good agreements with the results obtained by the statistical narrow band model(SNB model) which is regarded as the reference solutions. The WSGGM and its data base provided by this study can be used for analysis of radiative transfer by combustion gases with different thermal loadings and chemical compositions.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.