DOI QR코드

DOI QR Code

Application of the WSGGM for arbitrary gas mixtures of water vapor and carbon dioxide

임의 성분비로 구성된 수증기-이산화탄소 혼합가스에 대한 회색가스가중합법의 적용 연구

  • 박원희 (중앙대학교 기계공학과 대학원) ;
  • 김태국 (중앙대학교 기계공학부)
  • Published : 2003.08.01

Abstract

The weighted sum of gray gas model(WSGGM) is applied to arbitrary mixtures of CO$_2$ and H$_2$0 gases. To evaluate this model, the spectral and total intensities are obtained for two different problem types. One has uniform, parabolic and boundary layer type temperature profiles with uniform partial pressure, and the other has nonuniform partial pressure and temperature profile. The results obtained from the two different problem types show fairly good agreements with the results obtained by the statistical narrow band model(SNB model) which is regarded as the reference solutions. The WSGGM and its data base provided by this study can be used for analysis of radiative transfer by combustion gases with different thermal loadings and chemical compositions.

임의의 성분비로 혼합되어 있는 CO$_2$와 H$_2$O 혼합가스에 대하여 회색가스가중합법(WSGGM)을 적용하였다. 모델의 타당성을 검증하기 위하여 두 가지 다른 형태의 문제를 고려하였다. 첫 번째는 문제는 일정한 분압하의 균일, 포물선 및 경계층 온도 분포를 갖는 매체에 대한 문제이고, 두 번째는 온도 및 분압이 일정치 않은 매체에 대한 문제이다. 고려된 두가지 형태의 문제들에 대하여 WSGGM을 이용한 결과는 기준이 되는 좁은밴드 모델(SNB)의 결과와 잘 일치하고 있는 것을 확인하였다. 본 연구에서 제안된 모델과 데이터베이스는 연소가스에 의한 복사열전달의 해석에 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. Hartmann, J.M., Levi Di Leon, R., and Taine, J., "Line-by-line and narrow-band statistical model calculations for HO," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 32, No. 2, 1984, pp.119-127. https://doi.org/10.1016/0022-4073(84)90076-1
  2. Rothman, L.S., Gamache, R.R., Tipping, R.H., Rinsland, C.P., Smith, M.A.H., Benner, D. C., Devi, V.M., Flaud, J.-M., Camy-Peyret, C., Perrin, A., Goldman, A., Massie, ST., Brown, L.R. and Toth, R.A., "The HITRAN molecular database: editions of 1991 and 1992," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 48, 1992, pp.469-507. https://doi.org/10.1016/0022-4073(92)90115-K
  3. Edwards D.K., "Molecular gas band radiation," Advances in heat transfer, New York: Academic Press, Vol. 12, 1976, 115-193.
  4. Modak, A.T., "Exponential wide band parameters for the pure rotational band of water vapor," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 21, 1979, pp.131-142. https://doi.org/10.1016/0022-4073(79)90024-4
  5. Malkmus., W., "Random Lorentz Band Model with Exponential-tailed S-l Line Intensity Distribution" Journal of Optica Society of America, Vol. 57, 1967, pp.323-329. https://doi.org/10.1364/JOSA.57.000323
  6. Ludwig, C.B., Malkmus, W., Readon, J. E., and Thompson, A. L., Handbook of Infrared Radiation from Combustion Gases, NASA SP-3080, Scientific and Technical Information Office, Washington D. C, 1973.
  7. Kim, T.K., Park, W.H. and Lee, C.H., "Radiative Transfer Solutions for Pure Absorbing Gray and Nongray Gases within a Cubical Enclosure", KSME International Journal, Vol. 15, 2001, pp. 752-763.
  8. Park, W.H., Jung, H. S. and Kim, T.K., "Solutions of Radiative Transfer for Gray and Nongray Gases within a 3-D Cylindrical Enclosure," KSAS International Journal, Vol. 3, 2002, pp. 30-38.
  9. Park, W.H. and Kim, T.K., "Narrow Band Solutions of the Radiative Transfer within a Cubical Enclosure filled with Real Gas Mixtures," KSME International Journal, Vol. 15, No. 6, pp. 861-869, 2002
  10. Hotel, H.C., Sarofim A.F., Radiative Transfer, McGraw-Hill, 1967, New York pp. 363.
  11. Smith, T.F, Shen, Z.F, Friedman, Z.N, "Evaluation of Coefficients for the Weighted Sum of Gray Gases Model," ASME Journal of Heat Transfer, Vol. 104, 1982, pp. 602-608. https://doi.org/10.1115/1.3245174
  12. Modest, M.F., "The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer," ASME Journal of Heat Transfer, Vol. 113, 1993, pp. 650-656. https://doi.org/10.1115/1.2910614
  13. 김욱중, 송태호, "회체가중합법에 의한 수증기의 파장별 복사물성치에 관한 연구," 대한기계학회논문집(B) 제20권 제10호, 1996, pp. 3371-3380.
  14. 김욱중, 송태호, "회체가중합법모델에 기초한 연소가스의 파장별 복사성질," 대한기계학회논문집(B) 제23권 제5호, 1999, pp. 628-636.
  15. Kim, O.J. and Song, T.H, "Data Base of WSGGM-based Spectral Method for Radiation of Combustion Products," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 64, 2000, pp. 379-394. https://doi.org/10.1016/S0022-4073(99)00125-9
  16. Modest, M.F., Radiative Heat Transfer, 1993, McGraw-Hill.
  17. 박원희, 김태국, "이산화탄소-수증기 혼합가스에 대한 파장별 회색가스가중합법에서 회색가스재조합에 대한 연구," 기계학회논문집 B, 제27권, 2003, pp. 227-235. https://doi.org/10.3795/KSME-B.2003.27.2.227
  18. Soufiani, A. and Taine, J., "High Temperature Gas Radiative Property Parameters of Statistical Narrow-Band Model for H2O, CO2 and CO and Correlated-k Model for H2O and CO2," International Journal of Heat and Mass Transfer, Vol. 40, No.4, 1997 pp. 987-991. https://doi.org/10.1016/0017-9310(96)00129-9
  19. Liu, F., Smallwood, G. J. and Gulder, O. L, "Application of the Statistical Narrow-Band Correlated-k Method to Non-Grey Gas Radiation in CO2-H2O mixtures: Approximate Treatments of Overlapping Bands," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 68, 2001, pp. 401-417. https://doi.org/10.1016/S0022-4073(00)00033-9
  20. Kim, T.K., Menart, J.A. and Lee, H., "Nongray Radiative Gas Analyses Using the S-N Technique," ASME Journal of Heat Transfer, Vol. 113, 1991, pp. 946-952. https://doi.org/10.1115/1.2911226
  21. Godson, W. L., "The Evaluation of Infrared Radiation Fluxes due to Atmospheric Water Vapor," Quarterly Journal of Royal Meteoro- logical Society, Vol. 79, 1953, pp 367-379. https://doi.org/10.1002/qj.49707934104